PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Imaging polarimeter with high-accuracy measuring principles in crystal optics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An imaging polarimeter based on the principles of high-accuracy polarimetry well known in crystal optics is proposed. The application of scientific digital cameras for performance light measurements leads to precise data on polarizers quality, i.e., maps of extinction ratio and transmission axis. Processing of numerous images, acquired at various settings in the polarizer-sample-analyser system, allows to determine the two-dimensional distribution of the phase retardation of birefringent plates. Several results of imaging polarimetry experiments on birefringent plates demonstrate the impact of multiple light reflections on the measured phase retardation values. Experimental data for LiNbO₃ and SiO₂ crystal plates have been presented, demonstrating the capabilities of the proposed type of imaging polarimeter in the crystal optics studies. This technique also allows the measurement of the eigen wave ellipticities, associated with the optical activity of crystals.
Rocznik
Strony
art. no. e141948
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
  • Institute of Physics and Applied Computer Science, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland
  • Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, 5 Dewajtis St., 01-815 Warsaw, Poland
  • Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, 5 Dewajtis St., 01-815 Warsaw, Poland
Bibliografia
  • [1] Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453-5469 (2006). https://doi.org/10.1364/AO.45.005453
  • [2] Chipman, R. A., Lam, W.-S. T. & Young, G. Polarized Light and Optical Systems (Boca Raton, CRC Press. 2018) https://doi.org/10.1201/9781351129121
  • [3] Azzam, R. M. A. Stokes-vector and Mueller-matrix polarimetry [Invited]. J. Opt. Soc. Am. A. 33, 1396-1408 (2016). http://doi.org/10.1364/JOSAA.33.001396
  • [4] Goldstein, D. H. Polarized light (3rd ed.) Ch. 5-6 (Boca Raton, CRC press, 2017). https://doi.org/10.1201/b10436
  • [5] Pezzaniti, J. L. & Chipman, R. A. Mueller matrix imaging polarimetry. Opt. Eng. 34, 1558-1568 (1995). https://doi.org/10.1117/12.206161
  • [6] Shribak, M. & Oldenburg, R. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl. Opt. 42, 3009-3017 (2003). https://doi.org/10.1364/AO.42.003009
  • [7] Shribak, M. Polychromatic polarization microscope: bringing colors to a colorless world. Sci. Rep. 5, 17340 (2015). https://doi.org/10.1038/srep17340
  • [8] Geday, M. A., Kaminsky, W., Lewis, J. G. & Glazer, A. M. Images of absolute retardance L·Δn, using the rotating polariser method. J. Microsc. 198, 1-9 (2000). https://doi.org/10.1046/j.1365-2818.2000.00687.x
  • [9] Oka, K. & Kaneko, T. Compact complete imaging polarimeter using birefringent wedge prisms. Opt. Express 11, 1510-1519 (2003). https://doi.org/10.1364/OE.11.001510
  • [10] Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, 43–52 (2019). https://doi.org/10.1126/science.aax1839
  • [11] Gottlieb, D. & Arteaga, O. Mueller matrix imaging with a polarization camera: application to microscopy. Opt. Express. 29, 34723–34734 (2021). https://doi.org/10.1364/OE.439529
  • [12] Sasagawa, K. et al. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology. Opt. Express. 21, 11132-11140 (2013). https://doi.org/10.1364/OE.21.011132
  • [13] Hagen, N. A., Shibata, S. & Otani, Y. Calibration and performance assessment of microgrid polarization cameras. Opt. Eng. 58, 082408 (2019). https://doi.org/10.1117/1.OE.58.8.082408
  • [14] Kaminsky, W., Claborn, K. & Kahr, B. Polarimetric imaging of crystals. Chem. Soc. Rev. 33, 514–525 (2004). http://doi.org/10.1039/b201314m
  • [15] Takanabe, A., Koshima, H. & Asahi, T. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer. AIP Adv. 7, 025209 (2017). https://doi.org/10.1063/1.4977440
  • [16] Op Amp Applications Handbook (ed. Yung, W. G.) (Analog Devices, 2002). http://www.miedema.dyndns.org/co/2018/Op_Amp_Applications_Handbook-Walt-Jung_2005.pdf
  • [17] Kobayashi, J. & Uesu, Y. A new optical method and apparatus HAUP for measuring simultaneously optical activity and birefringence of crystals. I. Principles and construction. J. Appl. Crystallogr. 16, 204–211 (1983). https://doi.org/10.1107/S0021889883010262
  • [18] Hernández-Rodríguez, C., Gomez-Garrido, P. & Veintemillas, S. Systematic errors in the high-accuracy universal polarimeter: application to the determining temperature-dependent optical anisotropy of KDC and KDP crystals. J. Appl. Crystallogr. 33, 938-946 (2000). http://doi.org/10.1107/S0021889800003605
  • [19] Stangner, T., Zhang, H., Dahlberg, T., Wiklund, K. & Andersson, M. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser. Appl. Opt. 56, 5427–5435 (2017). https://doi.org/10.1364/AO.56.005427
  • [20] Bennett, J. M. Polarization. in Handbook of Optics (eds. Bass, M., Van Stryland, E .W., Wolfe, W. L. & Williams, D.R.) vol. 1, Ch 5 (McGraw-Hill, 1995).
  • [21] Bennett, J. M. Polarizers. in Handbook of Optics (eds. Bass, M., Van Stryland, E. W., Wolfe, W. L. & Williams, D. R.) vol. 2, Ch. 3 (McGraw-Hill, 1995).
  • [22] Zhou, K., Simpson, G., Chen, X., Zhang, L. & Bennion, I. High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings. Opt. Lett. 30, 1285–1287 (2005). https://doi.org/10.1364/OL.30.001285
  • [23] Ratajczyk, F. Generalized Malus law. Opt. Appl. 9, 281–283 (1979). https://opticaapplicata.pwr.edu.pl/files/pdf/1979/no4/optappl_904p281.pdf
  • [24] Takubo, Y., Takeda, N., Huang, J. H., Muroo, K. & Yamamoto, M. Precise measurement of the extinction ratio of a polarization analyser Meas. Sci. Technol. 9, 20–23 (1998). https://doi.org/10.1088/0957-0233/9/1/004
  • [25] Mei, H.-H., Chen, Sh.-J. & Ni, W.-T. Suspension of the fiber mode-cleaner launcher and measurement of the high extinction-ratio (10-9) ellipsometer for the Q & A experiment. J. Phys. Conf. Ser. 32, 236-243 (2006). https://doi.org/10.1088/1742-6596/32/1/035
  • [26] Shopa, Y., Shopa, M. & Ftomyn, N. Dual-wavelength laser polarimeter and its performance capabilities. Opto-Electron. Rev. 25, 6–9 (2017). http://doi.org/10.1016/j.opelre.2017.01.001
  • [27] Yariv, A. & Yeh, P. Optical Waves in Crystals: Propagation and Control of Laser Radiation. (Wiley, 2002).
  • [28] Shopa, M., Ftomyn, N. & Shopa, Y. Dual-wavelength polarimeter application in investigations of the optical activity of a langasite crystal. J. Opt. Soc. Am. A 34, 943-948 (2017). https://doi.org/10.1364/JOSAA.34.000943
  • [29] Shopa, M. & Ftomyn, N. Application of two-dimensional intensity maps in high-accuracy polarimetry. J. Opt. Soc. Am. A 36, 485-491 (2019). https://doi.org/10.1364/josaa.36.000485
  • [30] Hernández-Rodríguez, C. & Gomez-Garrido, P. Optical anisotropy of quartz in the presence of temperature-dependent multiple reflections using a high-accuracy universal polarimeter. J. Phys. D 33, 2985-2994 (2000). https://doi.org/10.1088/0022-3727/33/22/318
  • [31] Konstantinova, A. F., Evdishchenko, E. A. & Imangazieva, K. B. Manifestation of optical activity in crystals of different symmetry classes. Crystallogr. Rep. 51, 998-1008 (2006). https://doi.org/10.1134/S1063774506060113
  • [32] Crystal polarizers, Thorlabs, Inc. https://www.thorlabs.com/navigation.cfm?guide_id=2458 (2022).
  • [33] Shribak, M., Otani, Y. & Yoshizawa, T. Return-path polarimeter for two-dimensional birefringence distribution measurement. Proc. SPIE. 3754, 144–149 (1999). https://doi.org/10.1117/12.366325
  • [34] Noguchi, M., Ishikawa, T., Ohno, M. & Tachihara, S. Measurement of 2D birefringence distribution. Proc. SPIE. 1720, 367–378 (1992). https://doi.org/10.1117/12.132143
  • [35] Otani, Y., Shimada, T., Yoshizawa, T. & Umeda, N. Two-dimensional birefringence measurement using the phase shifting technique. Opt. Eng. 33, 1604–1609 (1994). https://doi.org/10.1117/12.168435
Uwagi
This research was funded in part by National Science Centre, Poland, grant No. 2021/41/B/ST3/00069. For the purpose of Open Access, the authors have applied a CC-BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69f9d6be-8a29-4720-88df-d7684b2500f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.