PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An ultra-wideband plasmonic reflector based on local resonant bandgap and Bragg bandgap

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unlike previous reports that utilized periodic modulation of insulation layer thickness or dielectrics, we propose the use of split ring resonators (SRRs) and their arrays to modulate the propagation characteristics of MIM plasmon waveguides. Due to the strong resonance backscattering of SRR, resonance transmission valleys appear in the transmission spectra of MIM waveguides. Changing the size of SRR can achieve continuously adjustable positions of resonance transmission valleys. The introduction of SRRs periodic arrays will result in two bands (bandgaps) with transmission minimum in the transmission spectra. Combining the dependence of the two bandgaps on the array period and the field distribution, the two bandgaps are Bragg bandgaps and local resonance bandgaps, respectively. By modulating the local resonance bandgap, the Bragg bandgap can be tuned. The introduction of local bandgap increases the degree of freedom to modulate the transmission characteristics of MIM waveguides. Combining local resonant bandgap and Bragg bandgap can significantly increase the reflection bandwidth, achieve broadband filtering, and facilitate the miniaturization of waveguide devices.
Czasopismo
Rocznik
Strony
205--216
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
  • School of Physics and Electronic Information, and Anhui Province Key Laboratory of Intelligent Computing and Applications, Huaibei Normal University, Huaibei 235000, China
autor
  • School of Physics and Electronic Information, and Anhui Province Key Laboratory of Intelligent Computing and Applications, Huaibei Normal University, Huaibei 235000, China
  • College of Science, Jiujiang University, Jiujiang, 332005, China
autor
  • Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang 236037, China
Bibliografia
  • [1] QUINTEN M., LEITNER A., KRENN J.R., AUSSENEGG F.R., Electromagnetic energy transport via linear chains of silver nanoparticles, Optics Letters 23(17), 1998: 1331-1333. https://doi.org/10.1364/ OL.23.001331
  • [2] MAIER S.A., KIK P.G., ATWATER H.A., MELTZER S., HAREL E., KOEL B.E., REQUICHA A.A.G., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nature Materials 2(4), 2003: 229-232. https://doi.org/10.1038/nmat852
  • [3] CHARBONNEAU R., LAHOUD N., MATTIUSSI G., BERINI P., Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons, Optics Express 13(3), 2005: 977-984. https://doi.org/10.1364/OPEX.13.000977
  • [4] BERINI P., Long-range surface plasmon polaritons, Advances in Optics and Photonics 1(3), 2009: 484-588. https://doi.org/10.1364/AOP.1.000484
  • [5] MORENO E., GARCIA-VIDAL F.J., RODRIGO S.G., MARTIN-MORENO L., BOZHEVOLNYI S.I., Channel plasmon-polaritons: Modal shape, dispersion, and losses, Optics Letters 31(23), 2006: 3447-3449. https://doi.org/10.1364/OL.31.003447
  • [6] YAN M., QIU M., Guided plasmon polariton at 2D metal corners, Journal of the Optical Society of America B 24(9), 2007: 2333-2342. https://doi.org/10.1364/JOSAB.24.002333
  • [7] NOVIKOV I.V., MARADUDIN A.A., Channel polaritons, Physical Review B 66(3), 2002: 035403. https://doi.org/10.1103/PhysRevB.66.035403
  • [8] PILE D.F.P., GRAMOTNEV D.K., Channel plasmon–polariton in a triangular groove on a metal surface, Optics Letters 29(10), 2004: 1069-1071. https://doi.org/10.1364/OL.29.001069
  • [9] GRAMOTNEV D.K., PILE D.F.P., Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface, Applied Physics Letters 85(26), 2004: 6323-6325. https://doi.org/10.1063/1.1839283
  • [10] BOZHEVOLYNI S.I., VOLKOV V.S., DEVAUX E., EBBESEN T.W., Channel plasmon-polariton guiding by subwavelength metal grooves, Physical Review Letters 95(4), 2005: 046802. https://doi.org/ 10.1103/PhysRevLett.95.046802
  • [11] BOARDMAN A.D., AERS G.C. TESHIMA R., Retarded edge modes of a parabolic wedge, Physical Review B 24(10), 1981: 5703-5712. https://doi.org/10.1103/PhysRevB.24.5703
  • [12] PILE D.F.P., OGAWA T., GRAMOTNEV D.K., OKAMOTO T., HARAGUCHI M., FUKUI M., MATSUO S., Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding, Applied Physics Letters 87(6), 2005: 061106. https://doi.org/ 10.1063/1.1991990
  • [13] BOLTASSEVA A., VOLKOV V.S., NIELSEN R.B., MORENO E., RODRIGO S.G., BOZHEVOLNYI S.I., Triangular metal wedges for subwavelength plasmon–polariton guiding at telecom wavelengths, Optics Express 16(8), 2008: 5252-5260. https://doi.org/10.1364/OE.16.005252
  • [14] STEINBERGER B., HOHENAU A., DITLBACHER H., STEPANOV A.L., DREZET A., AUSSENEGG F.R., LEITNER A., KRENN J.R., Dielectric stripes on gold as surface plasmon waveguides, Applied Physics Letters 88(9), 2006: 094104. https://doi.org/10.1063/1.2180448
  • [15] CHEN Z., HOLMGAARD T., BOZHEVOLNYI S.I., KRASAVIN A.V., ZAYATS A.V., MARKEY L., DEREUX A., Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides, Optics Letters 34(3), 2009: 310-312. https://doi.org/10.1364/OL.34.000310
  • [16] OULTON R.F., SORGER V.J., GENOV D.A., PILE D.F.P., ZHANG X., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics 2(8), 2008: 496-500. https://doi.org/10.1038/nphoton.2008.131
  • [17] DAI D.X., HE S.L., A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement, Optics Express 17(19), 2009: 16646-16653. https://doi.org/10.1364/OE.17.016646
  • [18] FUJII M., LEUTHOLD J., FREUDE W., Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides, IEEE Photonics Technology Letters 21(6), 2009: 362-364. https://doi.org/10.1109/LPT.2008.2011995
  • [19] DIONNE J.A., SWEATLOCK L.A., ATWATER H.A., POLMAN A., Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization, Physical Review B 73(3), 2006: 035407. https://doi.org/10.1103/PhysRevB.73.035407
  • [20] VERONIS G., FAN S., Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides, Applied Physics Letters 87(13), 2005: 131102. https://doi.org/10.1063/1.2056594
  • [21] MATSUZAKI Y., OKAMOTO T., HARAGUCHI M., FUKUI M., NAKAGAKI M., Characteristics of gap plasmon waveguide with stub structures, Optics Express 16(21), 2008: 16314-16325. https://doi.org/ 10.1364/OE.16.016314
  • [22] CHEN J., LI Z., LI J., GONG Q., Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference, Optics Express 19(10), 2011: 9976-9985. https://doi.org/10.1364/ OE.19.009976
  • [23] RAKHSHANI M.R., MANSOURI-BIRJANDI M.A., Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators, Journal of Modern Optics 63(11) 2016: 1078-1086. https://doi.org/10.1080/09500340.2015.1125962
  • [24] KAMADA S., OKAMOTO T., EL-ZOHARY S.E., HARAGUCHI M., Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides, Optics Express 24(15), 2016: 16224-16231. https://doi.org/10.1364/OE.24.016224
  • [25] HAFFNER C., HENI W., FEDORYSHYN Y., NIEGEMANN J., MELIKYAN A., ELDER D. L., BAEUERLE B., SALAMIN Y., JOSTEN A., KOCH U., HOESSBACHER C., DUCRY F., JUCHLI L., EMBORAS A., HILLERKUSS D., KOHL M., DALTON L. R., HAFNER C., LEUTHOLD J., All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale, Nature Photonics 9(8), 2015: 525-528. https://doi.org/10.1038/nphoton.2015.127
  • [26] PU M.B., YAO N., HU C.G., XIN X.C., ZHAO Z.Y., WANG C.T., LUO X.G., Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide, Optics Express 18(20), 2010: 21030-21037. https://doi.org/10.1364/OE.18.021030
  • [27] SHIN H., FAN S., All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure, Physical Review Letters 96(7), 2006: 073907. https://doi.org/10.1103/PhysRevLett.96.073907
  • [28] PARK J., KIM KY., LEE IM., NA H., LEE SY., LEE B., Trapping light in plasmonic waveguides, Optics Express 18(2), 2010: 598-623. https://doi.org/10.1364/OE.18.000598
  • [29] JANG M.S., ATWATER H., Plasmonic rainbow trapping structures for light localization and spectrum splitting, Physical Review Letters 107(20), 2011: 207401. https://doi.org/10.1103/PhysRevLett.107.207401
  • [30] HU H.F., JI D.X., ZENG X., LIU K., GAN Q.Q., Rainbow trapping in hyperbolic metamaterial waveguide, Scientific Reports 3, 2013: 1249. https://doi.org/10.1038/srep01249
  • [31] LI D.C., DU K., LIANG S.H., ZHANG W.D., MEI T., Wide band dispersionless slow light in hetero-MIM plasmonic waveguide, Optics Express 24(20), 2016: 22432-22437. https://doi.org/10.1364/OE.24.022432
  • [32] WANG B., WANG G.P., Plasmon Bragg reflectors and nanocavities on flat metallic surfaces, Applied Physics Letters 87(1), 2005: 013107. https://doi.org/10.1063/1.1954880
  • [33] HOSSEINI A., MASSOUD Y., A low-loss metal-insulator-metal plasmonic Bragg reflector, Optics Express 14(23), 2006: 11318-11323. https://doi.org/10.1364/OE.14.011318
  • [34] HAN Z., FORSBERG E., HE S., Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides, IEEE Photonics Technology Letters 19(2), 2007: 91-93. https://doi.org/10.1109/LPT.2006.889036
  • [35] HOSSEINI A., MASSOUD Y., Subwavelength plasmonic Bragg reflector structures for on-chip optoelectronic applications, [In] 2007 IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, LA, USA, 2007: 2283-2286. https://doi.org/10.1109/ISCAS.2007.378843
  • [36] LIU J.Q., WANG L.L., HE M.D., HUANG W.Q., WANG D.Y., ZOU B.S., WEN S.C., A wide bandgap plasmonic Bragg reflector, Optics Express 16(7), 2008: 4888-4894. https://doi.org/10.1364/ OE.16.004888
  • [37] CHEN S., LIU J.Q., LU H.Y., WANG Q.J., ZHU Y.Y., Strong coupling effects between a meta-atom and MIM nanocavity, AIP Advances 2(3), 2012: 032186. https://doi.org/10.1063/1.4757120
  • [38] CHEN S., LU H.Y., LIU J.Q., ZHU Y.Y., Strong coupling of a meta-diatom to a plasmonic nanocavity, Chinese Physics Letters 30(8), 2013: 087301. https://doi.org/10.1088/0256-307X/30/8/087301
  • [39] CHEN S., LIU J.Q., LU H.Y., ZHU Y.Y., All-optical strong coupling switches based on a coupled meta-atom and MIM nanocavity configuration, Plasmonics 8(3), 2013: 1439-1444. https://doi.org/ 10.1007/s11468-013-9557-3
  • [40] HAN Z., VAN V., HERMAN W.N., HO P.-T., Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes, Optics Express 17(15), 2009: 12678-12684. https://doi.org/10.1364/ OE.17.012678
  • [41] LIU Z.Y., ZHANG X.X., MAO Y.W., ZHU Y.Y., YANG Z.Y., CHAN C.T., SHENG P., Locally resonant sonic materials, Science 289(5485), 2000: 1734-1736. https://doi.org/10.1126/science.289.5485.1734
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69f0bb35-44f1-4e61-b4cb-a02b833369c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.