PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Super-resolution reconstruction of face images based on pre-amplification non-negative restricted neighborhood embedding

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The traditional super-resolution (SR) reconstruction algorithm based on neighborhood embedding preserves the local geometric structure of image block manifold to reconstruct high-resolution (HR) manifold. However, when the magnification is large, the low resolution (LR) image is seriously degraded and most of the information is lost after down-sampling. The neighborhood relation of the LR manifold can not reflect the inherent data structure. In order to solve the problem effectively, we propose a face image SR algorithm based on pre-amplification non-negative restricted neighborhood embedding. In the training phase, the LR image is pre-amplified so that there are more similar manifold structures between the HR and LR resolution images. The constraints of the reconstructed coefficients are loosened and the HR image blocks are iteratively updated to obtain the reconstructed weights. The experimental results show that the proposed method has a better reconstruction effect compared with some traditional learning algorithms.
Rocznik
Strony
899--905
Opis fizyczny
Bibliogr. 19 poz., rys., wykr., tab.
Twórcy
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, Jiangsu, China
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, Jiangsu, China
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, Jiangsu, China
autor
  • School of Automation, Southeast University, 210096 Nanjing, China
Bibliografia
  • [1] C. Hong, Y. Dityan, and X. Yimin, Super resolution through neighbor embedding [C], IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition,Washington DC, USA, 2004: 275‒282.
  • [2] X.B. Gao, K.B. Zhang, D.C. Tao, et al., Image super-resolution with sparse neighbor embedding [J]. IEEE Transactions on Image Processing, 2012, 21(7):3194‒3205.
  • [3] K. Su, Q. Tian, Q. Xue, et al., Neighborhood issue in singleframe image super-resolution [C], IEEE International Conference on Multimedia and Expo, 2005:1122‒1125.
  • [4] D. Wysoczański, J. Mroczka, and A.G. Polak, Performance analysis of regularization algorithms used for image reconstruction in computed tomography[J]. Bull. Pol. Ac.: Tech., 2013, 61(2): 467‒474.
  • [5] J. Mairal, F. Bach, J. Ponce, et al., Non-local sparse models for image restoration [C]. IEEE International Conference on Computer Vision, 2009: 2272‒2279.
  • [6] S. Baker and T. Kanade, “Hallucinating faces,” in Proc. 4th IEEE Int. Conf. Autom. Face Gesture Recognit., Mar. 2000, pp. 83‒88.
  • [7] C. Liu, H.-Y. Shum, and C.-S. Zhang, ”A two-step approach to hallucinating faces: Global parametric model and local nonparametric model,” in Proc. IEEE Comput. Soc. Conf. CVPR, vol. 1, Dec. 2001, pp. I-192-I-198.
  • [8] N. Wang, D. Tao, X. Gao, X. Li, and J. Li, “A comprehensive survey to face hallucination”, Int. J. Comput. Vis., vol. 106, no. 1, pp. 1‒22,2013.
  • [9] M. Xiang, Z. Jun-ping, and Q. Chun, Hallucinating face by position-patch [J]. Pattern Recognition, 2010, 43(6): 2224‒2236.
  • [10] C. Jung, L. Jiao, B. Liu, and M. Gong, “Position-patch based face hallucination using convex optimization”, Signal Processing Letters, IEEE, vol. 18, no. 6, pp. 367‒370, 2011.
  • [11] J. Jiang, R. Hu, Z. Han, T. Lu, and K. Huang, “Position patch based face hallucination via locality-constrained representation”, in ICME, 2012, pp. 212‒217.
  • [12] J. Jiang, R. Hu, Z. Han, Z. Wang, T. Lu, and J. Chen, “Locality constraint iterative neighbor embedding for face hallucination”, in Proc. IEEE ICME, Jul. 2013, pp. 1‒6.
  • [13] S.T. Roweis and L.K. Saul, “Nonlinear dimensionality reduction by locally linear embedding”, Science, vol. 290,no. 5500, pp. 2323‒2326, 2000.
  • [14] K. Zhang, X. Gao, D. Tao, etal., Single image super-resolution with non-local means and steering kernel regression [J]. IEEE Transactions on Image Processing, 2012, 21(11):4544‒4556.
  • [15] D.D. Lee and H.S. Seung, Learning the parts of objects by nonnegative matrix factorization [J]. Nature, 1999, 401(6755): 788‒791
  • [16] Z. Han, J. Jiang, R. Hu, T. Lu, and K. Huang, “Face image superresolution via nearest feature line”, in ACM MM, 2012, pp. 769‒772.
  • [17] J. Yang, J. Wright, T.S. Huang, and Y. Ma, “Image superresolution via sparse representation”, IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861‒2873, Nov. 2010
  • [18] J. Jiang, R. Hu, Z. Wang, and Z. Han, “Noise robust face hallucination via locality-constrained representation”, IEEE Trans. Multimedia, vol. 16, no. 5, pp. 1268‒1281, Aug. 2014.
  • [19] W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, and D. Zhao, “The cas-peal large-scale Chinese face database and baseline evaluations”, IEEE TSMC, Part A, vol. 38, no. 1, pp. 149‒161, 2008.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69f0a46e-1332-437f-851b-fcdf7ec112b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.