PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On the origin of upper crustal shear wave anisotropy at Samos Island, Greece

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shear-wave splitting is associated to diferent sources in the upper crust. Preferentially oriented minerals, stress-aligned microcracks and tectonic structures have all been identifed as causes of seismic anisotropy in the upper crust. However, distinguishing between them and discovering the actual origin of the splitting efect has important implications; changes in the anisotropic properties of the medium related to the behavior of fuid-flled microcracks could have potential connections to the occurrence of an impending signifcant earthquake. The recent 2020 Samos Mw =6.9 event and its associated sequence was a great opportunity to study shear-wave splitting in the area. The spatial constrains in such studies, i.e., the requirement of events located very close to the receivers, did not permit exploring local anisotropy in the past, due to a severe lack of suitable data. To establish a background of splitting, we searched for any appropriate earthquake in a fve-year period preceding the mainshock. We performed an automatic analysis on over 200 event-station pairs and obtained 164 high-quality splitting observations between January 2015 and November 2020. Results indicated a strong connection to local structures; Sfast polarization axes seem to align with faults in the area. However, we also observed a period of increasing and decreasing time-delays, associated with an Mw =6.3 earthquake that occurred on June 2017 near Lesvos Island. The latter behavior implies the possibility of stress-induced anisotropy in the area. Thus, the Samos Island could be represented by two diferent sources of splitting; structures to the NW and microcracks to the SE.
Czasopismo
Rocznik
Strony
1051--1064
Opis fizyczny
Bibliogr. 92 poz.
Twórcy
autor
  • Department of Geology & Geoenvironment, Section of Geophysics-Geothermics, National and Kapodistrian University of Athens, Athens, Greece
autor
  • Department of Geology & Geoenvironment, Section of Geophysics-Geothermics, National and Kapodistrian University of Athens, Athens, Greece
  • Department of Geology & Geoenvironment, Section of Geophysics-Geothermics, National and Kapodistrian University of Athens, Athens, Greece
  • Department of Geology & Geoenvironment, Section of Geophysics-Geothermics, National and Kapodistrian University of Athens, Athens, Greece
autor
  • Department of Geology & Geoenvironment, Section of Geophysics-Geothermics, National and Kapodistrian University of Athens, Athens, Greece
Bibliografia
  • 1. Ambraseys N (2015) Earthquakes in the Mediterranean and Middle East: A multidisciplinary study of seismicity up to 1900. Cambridge Univ Press. https://doi.org/10.1017/CBO9781139195430
  • 2. Aster RC, Shearer PM, Berger J (1990) Quantitative measurements of shear wave polarizations at the Anza Seismic Network, southern California: Implications for shear wave splitting and earthquake prediction. J Geophys Res 95:12449. https://doi.org/10.1029/JB095iB08p12449
  • 3. Benetatos C, Kiratzi A, Ganas A, Ziazia M, Plessa A, Drakatos G (2006) Strike-slip motions in the Gulf of Siǧaçik (western Turkey): Properties of the 17 October 2005 earthquake seismic sequence. Tectonophysics 426:263–279. https://doi.org/10.1016/j.tecto.2006.08.003
  • 4. Berens P (2009) CircStat: a MATLAB toolbox for circular statistics. J Stat Softw 31:1–21
  • 5. Bernard P, Chouliaras G, Tzanis A, Briole P, Bouin MP, Tellez J, Stavrakakis G, Makropoulos K (1997) Seismic and electrical anisotropy in the Mornos delta, Gulf of Corinth, Greece, and its relationship with GPS strain measurements. Geophys Res Lett. https://doi.org/10.1029/97GL02102
  • 6. Bianco F, Zaccarelli L (2008) A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm. J Seismol 13:253–266. https://doi.org/10.1007/s10950-008-9125-z
  • 7. Boness NL, Zoback MD (2006a) A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth. Geophysics 71:F131–F146. https://doi.org/10.1190/1.2231107
  • 8. Boness NL, Zoback MD (2006b) Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology 34:825–828. https://doi.org/10.1130/G22309.1
  • 9. Bouin MP, Téllez J, Bernard P (1996) Seismic anisotropy around the Gulf of Corinth, Greece, deduced from three-component seismograms of local earthquakes and its relationship with crustal strain. J Geophys Res Solid Earth 101:5797–5811. https://doi.org/10.1029/95JB03464
  • 10. Brun J, Faccenna C, Gueydan F, Sokoutis D, Philippon M, Kydonakis K, Gorini C (2016) Effects of slab rollback accelration on Aegeaean extension. Bull Geol Soc Greece 50:5–14
  • 11. Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north-eastern Aegean Sea Islands. Tectonophysics 597–598:106–122. https://doi.org/10.1016/j.tecto.2012.11.026
  • 12. Cochran ES, Vidale JE, Li YG (2003) Near-fault anisotropy following the Hector Mine earthquake. J Geophys Res Solid Earth. https://doi.org/10.1029/2002jb002352
  • 13. Cochran ES, Li YG, Vidale JE (2006) Anisotropy in the shallow crust observed around the San Andreas fault before and after the 2004 M 6.0 Parkfield earthquake. Bull Seismol Soc Am 96:364–375. https://doi.org/10.1785/0120050804
  • 14. Crampin S (1994) The fracture criticality of crustal rocks. Geophys J Int 118:428–438. https://doi.org/10.1111/j.1365-246X.1994.tb03974.x
  • 15. Crampin S, Evans R, Üçer B, Doyle M, Davis JP, Yegorkina GV, Miller A (1980) Observations of dilatancy-induced polarization anomalies and earthquake prediction. Nature 286:874–877. https://doi.org/10.1038/286874a0
  • 16. Crampin S, Volti T, Chastin S, Gudmundsson A, Stefánsson R (2002) Indication of high pore-fluid pressures in a seismically-active fault zone. Geophys J Int 151(2):F1–F5. https://doi.org/10.1046/j.1365-246X.2002.01830.x
  • 17. Crampin S, Gao Y, Bukits J (2015) A review of retrospective stress-forecasts of earthquakes and eruptions. Phys Earth Planet Inter 245:76–87. https://doi.org/10.1016/j.pepi.2015.05.008
  • 18. Crampin S, Gao Y, De Santis A (2013) A few earthquake conundrums resolved. J Asian Earth Sci 62:501–509. https://doi.org/10.1016/j.jseaes.2012.10.036
  • 19. Crampin S, Peacock S (2005) A review of shear-wave splitting in the compliant crack-critical anisotropic Earth. Wave Motion 41:59–77. https://doi.org/10.1016/j.wavemoti.2004.05.006
  • 20. Crampin S, Volti T, Stefánsson R (1999) A successfully stress-forecast earthquake. Geophys J Int 138:F1–F5. https://doi.org/10.1046/j.1365-246x.1999.00891.x
  • 21. Crampin S, Zatsepin S (1997) Modelling the compliance of crustal rock—II. Response to temporal changes before earthquakes. Geophys J Int 129:495–506. https://doi.org/10.1111/j.1365-246X.1997.tb04489.x
  • 22. Crampin S, Gao Y (2014) Two species of microcracks. Appl Geophys 11:1–8. https://doi.org/10.1007/s11770-014-0415-7
  • 23. Crotwell HP, Owens TJ, Ritsema J (1999) The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismol Res Lett 70:154–160. https://doi.org/10.1785/gssrl.70.2.154
  • 24. Del Pezzo E, Bianco F, Petrosino S, Saccorotti G (2004) Changes in the coda decay rate and shear-wave splitting parameters associated with seismic swarms at Mt. Vesuvius. Italy Bull Seismol Soc Am 94:439–452
  • 25. Durand S, Montagner JP, Roux P, Brenguier F, Nadeau RM, Ricard Y (2011) Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophys Res Lett. https://doi.org/10.1029/2011GL047875
  • 26. Evangelidis CP (2017) Seismic anisotropy in the Hellenic subduction zone: Effects of slab segmentation and subslab mantle flow. Earth Planet Sci Lett 480:97–106. https://doi.org/10.1016/j.epsl.2017.10.003
  • 27. Evangelidis CP, Triantafyllis N, Samios M, Boukouras K, Kontakos K, Ktenidou O-J, Fountoulakis I, Kalogeras I, Melis N, Galanis O, Papazachos C, Hatzidimitriou P, Scordilis E, Sokos E, Paraskevopoulos P, Serpetsidaki A, Kaviris G, Kapetanidis V, Papadimitriou P, Voulgaris N, Kassaras I, Vallianatos F et al (2021) Seismic waveform data from Greece and Cyprus: Integration, archival and open access, Seismol Res lett SRL-S-20–00509, submitted
  • 28. Evans R (1984) Effects of the free surface on shear wavetrains. Geophys J Int 76:165–172. https://doi.org/10.1111/j.1365-246X.1984.tb05032.x
  • 29. Floyd MA, Billiris H, Paradissis D, Veis G, Avallone A, Briole P, McClusky S, Nocquet JM, Palamartchouk K, Parsons B, England PC (2010) A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. J Geophys Res Solid Earth 115:1–25. https://doi.org/10.1029/2009JB007040
  • 30. Ganas A, Elias P, Briole P, Tsironi V, Valkaniotis S, Escartin J, Karasante I, Efstathiou E, (2020) Fault responsible for Samos earthquake identified. Temblor https://doi.org/10.32858/temblor.134
  • 31. Ganas A, Elias P, Kapetanidis V, Valkaniotis S, Briole P, Kassaras I, Argyrakis P, Barberopoulou A, Moshou A (2019) The July 20, 2017 M6.6 Kos Earthquake: Seismic and Geodetic Evidence for an Active North-Dipping Normal Fault at the Western End of the Gulf of Gökova (SE Aegean Sea). Pure Appl Geophys 176:4177–4211. https://doi.org/10.1007/s00024-019-02154-y
  • 32. Ganas A, Oikonomou AI, Tsimi C (2013) NOAFAULTS : a digital database for active faults in Greece. Bull Geol Soc Greece 47:518–530
  • 33. Gao Y, Crampin S (2004) Observations of stress relaxation before earthquakes. Geophys J Int 157:578–582. https://doi.org/10.1111/j.1365-246X.2004.02207.x
  • 34. Gao Y, Crampin S (2006) A stress-forecast earthquake (with hindsight), where migration of source earthquakes causes anomalies in shear-wave polarisations. Tectonophysics 426:253–262. https://doi.org/10.1016/j.tecto.2006.07.013
  • 35. Gao Y, Crampin S (2008) Shear-wave splitting and earthquake forecasting. Terra 20:440–448
  • 36. Gao Y, Chen A, Shi Y, Zhang Z, Liu L (2019) Preliminary analysis of crustal shear-wave splitting in the Sanjiang lateral collision zone of the southeast margin of the Tibetan Plateau and its tectonic implications. Geophys Prospect 67:2432–2449. https://doi.org/10.1111/1365-2478.12870
  • 37. Gao Y, Wang P, Zheng S, Wang M, Chen Y, Zhou H (1998) Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, southern China. Geophys J Int 135:102–112. https://doi.org/10.1046/j.1365-246X.1998.00606.x
  • 38. Gao Y, Wu J, Fukao Y, Shi Y, Zhu A (2011) Shear wave splitting in the crust in North China: Stress, faults and tectonic implications. Geophys J Int 187:642–654. https://doi.org/10.1111/j.1365-246X.2011.05200.x
  • 39. Giannopoulos D, Sokos E, Konstantinou KI, Tselentis GA (2015) Shear wave splitting and VP/VS variations before and after the Efpalio earthquake sequence, western Gulf of Corinth, Greece. Geophys J Int 200:1436–1448. https://doi.org/10.1093/gji/ggu467
  • 40. Graham KM, Savage MK, Arnold R, Zal HJ, Okada T, Iio Y, Matsumoto S (2020) Spatio-temporal Analysis of Seismic Anisotropy Associated with the Cook Strait and Kaikōura Earthquake Sequences in New Zealand. Geophys J Int 223:1987–2008. https://doi.org/10.1093/gji/ggaa433
  • 41. Hiramatsu Y, Iwatsuki K, Ueyama S, Iidaka T (2010) Spatial variation in shear wave splitting of the upper crust in the zone of inland high strain rate, central Japan. Earth, Planets Sp 62:675–684. https://doi.org/10.5047/eps.2010.08.003
  • 42. Hunter JD (2007) Matplotlib: A 2D Graphics Environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55
  • 43. Illsley-Kemp F, Savage MK, Keir D, Hirschberg HP, Bull JM, Gernon TM, Hammond JOS, Kendall JM, Ayele A, Goitom B (2017) Extension and stress during continental breakup: Seismic anisotropy of the crust in Northern Afar. Earth Planet Sci Lett 477:41–51. https://doi.org/10.1016/j.epsl.2017.08.014
  • 44. Ismaïl WB, Mainprice D (1998) An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296:145–157. https://doi.org/10.1016/S0040-1951(98)00141-3
  • 45. Johnson JH, Savage MK, Townend J (2011) Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand. J Geophys Res Solid Earth 116:1–18. https://doi.org/10.1029/2011JB008308
  • 46. Johnson JH, Savage MK (2012) Tracking volcanic and geothermal activity in the Tongariro Volcanic Centre, New Zealand, with shear wave splitting tomography. J Volcanol Geotherm Res 223–224:1–10. https://doi.org/10.1016/j.jvolgeores.2012.01.017
  • 47. Kapetanidis V, Kassaras I (2019) Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms. J Geodyn 123:55–82. https://doi.org/10.1016/j.jog.2018.11.004
  • 48. Kassaras I, Kapetanidis V, Ganas A, Tzanis A, Kosma C, Karakonstantis A, Valkaniotis S, Chailas S, Kouskouna V, Papadimitriou P (2020) The New Seismotectonic Atlas of Greece (v1.0) and its Implementation. Geosciences 10:447
  • 49. Kaviris G, Fountoulakis I, Spingos I, Millas C, Papadimitriou P (2018a) Mantle dynamics beneath Greece from SKS and PKS seismic anisotropy study. Acta Geophys 66:1341–1357. https://doi.org/10.1007/s11600-018-0225-z
  • 50. Kaviris G, Millas C, Spingos I, Kapetanidis V, Fountoulakis I, Papadimitriou P, Voulgaris N, Makropoulos K (2018b) Observations of shear-wave splitting parameters in the Western Gulf of Corinth focusing on the 2014 Mw=5.0 earthquake. Phys Earth Planet Inter 282:60–76. https://doi.org/10.1016/j.pepi.2018.07.005
  • 51. Kaviris G, Spingos I, Kapetanidis V, Papadimitriou P, Voulgaris N, Makropoulos K (2017) Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the Western Gulf of Corinth (Greece) during 2013. Phys Earth Planet Inter 269:148–164
  • 52. Kaviris G, Spingos I, Millas C, Kapetanidis V, Fountoulakis I, Papadimitriou P, Voulgaris N, Drakatos G (2018c) Effects of the January 2018 seismic sequence on shear-wave splitting in the upper crust of Marathon (NE Attica, Greece). Phys Earth Planet Inter 285:45–58. https://doi.org/10.1016/j.pepi.2018.10.007
  • 53. Kaviris G, Spingos I, Karakostas V, Papadimitriou E, Tsapanos T (2020) Shear-wave splitting properties of the upper crust, during the 2013–2014 seismic crisis, in the CO2-rich field of Florina Basin. Greece Phys Earth Planet Inter 106503. https://doi.org/10.1016/j.pepi.2020.106503
  • 54. Kiratzi A (2018) The 12 June 2017 Mw 6.3 Lesvos Island (Aegean Sea) earthquake: Slip model and directivity estimated with finite-fault inversion. Tectonophysics 724–725:1–10. https://doi.org/10.1016/j.tecto.2018.01.003
  • 55. Kouskouna V, Sakkas G (2013) The University of Athens Hellenic Macroseismic Database (HMDB.UoA): historical earthquakes. J Seis 17:1253–1280. https://doi.org/10.1007/s10950-013-9390-3
  • 56. Kreemer C (2009) Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. J Geophys Res Solid Earth 114:1–18. https://doi.org/10.1029/2009JB006416
  • 57. Kreemer C, Chamot-Rooke N (2004) Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophys J Int 157:1377–1392. https://doi.org/10.1111/j.1365-246X.2004.02270.x
  • 58. Krischer L, Megies T, Barsch R, Beyreuther M, Lecocq T, Caudron C, Wassermann J (2015) ObsPy: A bridge for seismology into the scientific Python ecosystem. Comput Sci Discov 8:17. https://doi.org/10.1088/1749-4699/8/1/014003
  • 59. Liu S, Crampin S, Luckett R, Yang J (2010) A deterministic short-term precursor to the 2010 Eyjafjallajökull eruption in Iceland. Geogr J 177:4–11. https://doi.org/10.1111/j.1475-4959.2010.00379.x
  • 60. Makropoulos K, Kaviris G, Kouskouna V (2012) An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat Hazards Earth Syst Sci 12:1425–1430. https://doi.org/10.5194/nhess-12-1425-2012
  • 61. Margheriti L, Ferulano MF, Di Bona M (2006) Seismic anisotropy and its relation with crust structure and stress field in the Reggio Emilia Region (Northern Italy). Geophys J Int 167:1035–1043. https://doi.org/10.1111/j.1365-246X.2006.03168.x
  • 62. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H et al (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res Solid Earth 105:5695–5719. https://doi.org/10.1029/1999jb900351
  • 63. Montagner JP, Tanimoto T (1991) Global upper mantle tomography of seismic velocities and anisotropies. J Geophys Res 96:20337. https://doi.org/10.1029/91JB01890
  • 64. Nolte KA, Tsoflias GP, Bidgoli TS, Watney WL (2017) Shear-wave anisotropy reveals pore fluid pressure–induced seismicity in the U.S. midcontinent. Sci Adv 3:1700443
  • 65. Ocakoǧlu N, Demirbaǧ E, Kuşçu I (2005) Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): Evidences of strike-slip faulting with compression in the Aegean extensional regime. Mar Geol 219:155–171. https://doi.org/10.1016/j.margeo.2005.06.004
  • 66. Papadimitriou EE, Sykes LR (2001) Evolution of the stress field in the Northern Aegean Sea (Greece). Geophys J Int 146:747–759. https://doi.org/10.1046/j.0956-540X.2001.01486.x
  • 67. Papadimitriou P, Kapetanidis V, Karakonstantis A, Spingos I, Kassaras I, Sakkas V, Kouskouna V, Karatzetzou A, Pavlou K, Kaviris G, Voulgaris N (2020) First Results on the Mw=6.9 Samos Earthquake of 30 October 2020. Bull Geol Soc Greece https://doi.org/10.12681/bgsg.25359
  • 68. Papadimitriou P, Kassaras I, Kaviris G, Tselentis GA, Voulgaris N, Lekkas E, Chouliaras G, Evangelidis C, Pavlou K, Kapetanidis V et al (2018) The 12th June 2017 Mw=6.3 Lesvos earthquake from detailed seismological observations. J Geodyn 115:23–42. https://doi.org/10.1016/j.jog.2018.01.009
  • 69. Papadimitriou P, Kaviris G, Makropoulos K (1999) Evidence of shear-wave splitting in the eastern Corinthian Gulf (Greece). Phys Earth Planet Inter 114:3–13. https://doi.org/10.1016/S0031-9201(99)00041-2
  • 70. Pastori M, Baccheschi P, Margheriti L (2019) Shear Wave Splitting Evidence and Relations With Stress Field and Major Faults From the “Amatrice-Visso-Norcia Seismic Sequence.” Tectonics 38:3351–3372. https://doi.org/10.1029/2018TC005478
  • 71. Paulssen H (2004) Crustal anisotropy in southern California from local earthquake data. Geophys Res Lett 31:1601. https://doi.org/10.1029/2003GL018654
  • 72. Peng Z, Ben-Zion Y (2004) Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the North Anatolian fault. Geophys J Int 159:253–274. https://doi.org/10.1111/j.1365-246X.2004.02379.x
  • 73. Piccinini D, Margheriti L, Chiaraluce L, Cocco M (2006) Space and time variations of crustal anisotropy during the 1997 Umbria-Marche, central Italy, seismic sequence. Geophys J Int 167:1482–1490. https://doi.org/10.1111/j.1365-246X.2006.03112.x
  • 74. Ring U, Will T, Glodny J, Kumerics C, Gessner K, Thomson S, Güngör T, Monié P, Okrusch M, Drüppel K (2007) Early exhumation of high‐pressure rocks in extrusion wedges: Cycladic blueschist unit in the eastern Aegean, Greece, and Turkey. Tectonics 26:TC2001 https://doi.org/10.1029/2005TC001872.
  • 75. Salimbeni S, Pondrelli S, Margheriti L, Park J, Levin V (2008) SKS splitting measurements beneath Northern Apennines region: A case of oblique trench-retreat. Tectonophysics 462:68–82. https://doi.org/10.1016/j.tecto.2007.11.075
  • 76. Savage MK, Wessel A, Teanby NA, Hurst AW (2010) Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J Geophys Res Solid Earth. https://doi.org/10.1029/2010JB007722
  • 77. Shi Y, Gao Y, Shen X, Liu KH (2020) Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan plateau and tectonic implications of the Haiyuan fault. Tectonophysics 774:228274. https://doi.org/10.1016/j.tecto.2019.228274
  • 78. Silver PG, Chan WW (1991) Shear wave splitting and subcontinental mantle deformation. J Geophys Res Solid 96:16429–16454. https://doi.org/10.1029/91JB00899
  • 79. Spingos I, Kaviris G, Millas C, Papadimitriou P, Voulgaris N (2020) Pytheas: An open-source software solution for local shear-wave splitting studies. Comput Geosci 134:104346. https://doi.org/10.1016/j.cageo.2019.104346
  • 80. Stamatakis M, Tziritis E, Evelpidou N (2009) The geochemistry of Boron-rich groundwater of the Karlovassi Basin, Samos Island, Greece. Cent Eur J Geosci 1:207–218. https://doi.org/10.2478/v10085-009-0017-4
  • 81. Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H et al (2013) The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J Seismol 17:523–544. https://doi.org/10.1007/s10950-012-9335-2
  • 82. Tan O, Papadimitriou EE, Pabucçu Z, Karakostas V, Yörük A, Leptokaropoulos K (2014) A detailed analysis of microseismicity in Samos and Kusadasi (Eastern Aegean Sea) areas. Acta Geophys 62:1283–1309. https://doi.org/10.2478/s11600-013-0194-1
  • 83. Teanby NA, Kendall JM, van der Baan M (2004) Automation of shear-wave splitting measurements using cluster analysis. Bulliten Seismol Soc Am 94:453–463. https://doi.org/10.1785/0120030123
  • 84. Triantafyllou I, Gogou M, Mavroulis S, Lekkas E, Papadopoulos GA, Thravalos M (2021) The Tsunami Caused by the 30 October 2020 Samos (Aegean Sea) Mw7.0 Earthquake: Hydrodynamic Features, Source Properties and Impact Assessment from Post-Event Field Survey and Video Records. J. Marine Sci Engin 9(1):68
  • 85. Unglert K, Savage MK, Fournier N, Ohkura T, Abe Y (2011) Shear wave splitting, vP/vS, and GPS during a time of enhanced activity at Aso caldera Kyushu. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB008520
  • 86. Valcke SLA, Casey M, Lloyd GE, Kendall JM, Fisher QJ (2006) Lattice preferred orientation and seismic anisotropy in sedimentary rocks. Geophys J Int 166:652–666. https://doi.org/10.1111/j.1365-246X.2006.02987.x
  • 87. Walsh E, Arnold R, Savage MK (2013) Silver and Chan revisited. J Geophys Res Solid Earth 118:5500–5515. https://doi.org/10.1002/jgrb.50386
  • 88. Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F, Smith WHF, Tian D (2019) The Generic Mapping Tools Version 6. Geochem Geophys Geosys 20:5556–5564. https://doi.org/10.1029/2019GC008515
  • 89. Wüstefeld A, Bokelmann G (2007) Null detection in shear-wave splitting measurements. Bull Seismol Soc Am 97:1204–1211. https://doi.org/10.1785/0120060190
  • 90. Yolsal-Çevikbilen S, Taymaz T, Helvaci C (2014) Earthquake mechanisms in the Gulfs of Gökova, Siğacik, Kuşadasi, and the Simav Region (western Turkey): Neotectonics, seismotectonics and geodynamic implications. Tectonophysics 635:100–124. https://doi.org/10.1016/j.tecto.2014.05.001
  • 91. Zatsepin S, Crampin S (1997) Modelling the compliance of crustal rock—I. Response of shear-wave splitting to differential stress. Geophys J Int 129:477–494. https://doi.org/10.1111/j.1365-246X.1997.tb04488.x
  • 92. Zinke JC, Zoback MD (2000) Structure-related and stress-induced shear-wave velocity anisotropy: Observations from microearthquakes near the Calaveras Fault in Central California. Bull Seismol Soc Am 90:1305–1312. https://doi.org/10.1785/0119990099
Uwagi
Korekta artykułu w tym numerze, na stronach: 1065-1066. Numer DOI korekty: 10.1007/s11600-021-00613-6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69ed74a1-c6d4-4c08-9619-def63b28f473
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.