PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of electronic exposure and heat treatment on the electrical conductivity of epoxy polymer materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of electron irradiation fluxes with energy of 12 MeV and heat treatment on the electrical properties of epoxypolymers with PEPA content of 11, 12 and 13 wt.h. per 100 wt. including epoxy resin. It is show that the electrical conductivity of epoxypolymer increases with electron irradiation fluxes greater than 10 kGy. It found that extra heat treatment of irradiated samples with a hardener content of 12 wt. h. hours leads to an increase in their electrical conductivity. The nature of the obtained dependences of electrical conductivity is determine by the processes of cross-linking, radiation, thermal destruction and mass fraction of the hardener. Radiation-stimulated increase in the conductivity of epoxypolymers can be use to create conductive protective coatings and sensor electronics elements.
Rocznik
Tom
Strony
81--89
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • Lutsk National Technical University, Lvivska Str., 75, Lutsk, 43018, Ukraine,
  • Department of Basic Sciences. Lutsk National Technical University
  • Materials Science Department, Lutsk National Technical University
  • Department of Photonuclear Processes, Institute of Electronic Physics, NAS
autor
  • Department of Photonuclear Processes, Institute of Electronic Physics, NAS
Bibliografia
  • Abakarov S.A., Magomedov G.M., Magomedov M.Z.R. 2007. Electrical conductivity of epoxy polymers filled with SiO2 nanoparticles. Dagestan State Pedagogical University Journal Natural and Exact Sciences, 1: 11-15.
  • Akhmedov F.I., Kuliev A.D., Akhverdiev R.B., Samedova A.S., Guseinova M.B. 2013. The effect of gamma radiation on the electrical conductivity of polymeric polypropylene composites with aluminum and iron oxides. Electronic Materials Processing, 6: 94-97.
  • Bai H., Shi G. 2007. Gas sensors based on conducting polymers. Sensor, 7(3): 267-307.
  • Blait E.R., Blur D. 2008. Electrical properties of polymers. Fizmatlit, Moscow, p. 373.
  • Clough R.L. 2001. High-energy radiation and polymers: A review of commercial processes and emerging applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 185(1-4): 8-33.
  • Demkiv T.M., Haliatkin O.O., Khapko Z.A. 2015. Influence of ionizing radiation on the electrical properties of composite polymeric materials with BaF2 and SrF2 nanoparticles. Visnyk of Lviv National University, The Series is Physical, 50: 64-71.
  • Fouracre R.A., Banford H.M., Tedford D.J., Gedeon S., Cao X., Wu S., Fu L. 1991. The effect of gamma-irradiation on the electrical properties of two typical epoxy resin systems. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 37(4): 581-588.
  • Galiamov B.Sh., Zavialov S.A., Kupriianov L.Iu. 2000. Features of the microstructure and sensory properties of nanosized composite films. Journal of Physical Chemistry, 74(3): 459-465.
  • Gaskov A.M., Rumiantceva M.N. 2000. Selection of materials for solid state gas sensors. Inorganic Materials, 36(3): 369-378.
  • Ishkov A.V., Sagalakov A.M. 2006. Electric conductivity of composites containing nonstoichiometric titanium compounds. Technical Physics Letters, 32(5): 377-378.
  • Knyazev V.K. 1977. Epoxy construction materials in mechanical engineering. Mechanical Engineering, Moscow, p. 183.
  • Kuryptya Y., Sova N., Savchenko B., Slieptsov A., Plavan V. 2016. Design of electrically conducting polymer hybrid composites based on polyvinyl chloride and polyethylene. Eastern-European Journal of Enterprise Technologies, 3, 6(81): 26–32.
  • Nychyporenko O.S., Dmytrenko O.P., Kylish M.P., Pyinchuk-Rugal T.M., Grabovskij Yu.Je., Zabolotnij M.A., Mamunya Je.P., Levchenko V.V., Shlapa ts’ka V.V., Strel’chuk V.V., Tkac h V.M. 2016. Radiation-stimulated alteration of electrical conductivity of polyethylene nanocomposites with carbon nanotubes. Problems of Atomic Science and Technology, 2(102): 99-106.
  • Pavlenko V.I., Bondarenko G.G., Cherkashina N.I. 2015. Calculation of ionization and radiation losses of fast electrons in polystyrene composite. Perspektivnye Materialy, 8: 5-11.
  • Pavlenko V.I., Yastrebinskij R.N., Edamenko O.D., Tarasov D.G. 2010. Affecting of high-power bunches of rapid electrons polymeric radiation-protective composites. Problems of Atomic Science and Technology, 1(65): 129-134.
  • Petrov V.M., Gagulin V.V. 2001. Radar Absorbing Materials. Inorganic Materials, 37(2): 135-141.
  • Pinchuk T.N., Didenko T.P., Dmitrenko O.P., Kulish N.P., Prilutsky Yu.P., Grabovsky Yu.Ye., Sementsov Yu.I., Shlapatskaya V.V. 2009. Radiation modification of the physicomechanical properties of isotactic polypropylene with multi-walled carbon nanotubes. Problems of Atomic Science and Technology, 4: 275-278.
  • Savchuk P.P., Kostornov A.G., Kashitskii V.P., Sadova O.L. 2014. Friction wear of modified epoxy composites. Powder Metallurgy and Metal Ceramics, 53(3-4): 205-209.
  • Savchuk P.P., Kostornov A.H., Kashytskyi V.P. 2008. Influence of technological parameters on properties of epoxy composite materials. Bulletin of Vasyl Stefanyk Precarpathian National University, Chemistry Series, VI: 56-64.
  • Sheshin E.P., Denisova L.V. 2016. Radiation modification of composite materials under gamma irradiation. Bulletin of BSTU named after V.G. Shukhov, 12: 170-173.
  • Stukhliak P.D., Kartashov V.V. 2011. Physico-mechanical properties of epoxy composites treated with low-frequency alternating magnetic fields. Oil and Gas Exploration and Development, 2: 49-53.
  • Verma A., Singh V.K. 2019. Mechanical, microstructural and thermal characterization of epoxybased human hair-reinforced composites. Journal of Testing and Evaluation, 47(2): 1193-1215.
  • Verma A., Baurai K., Sanjay M.R., Siengchin S. 2020. Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polymer Composites, 41(1): 338-349.
  • Verma A., Budiyal L., Sanjay M.R., Siengchin S. 2019. Processing and characterization analysis of pyrolyzed oil rubber (from waste tires) – epoxy polymer blend composite for lightweight structures and coatings applications. Polymer Engineering & Science, 59(10): 2041-2051.
  • Verma A., Gaur A., Singh V.K. 2017. Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin. Materials Performance and Characterization, 6(1): 500-520.
  • Verma A., Joshi K., Gaur A., Singh V.K. 2018. Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: fabrication and experimental characterization. Journal of the Mechanical Behavior of Materials, 27(5-6).
  • Verma A., Negi P., Singh V.K. 2018. Physical and Thermal Characterization of Chicken Feather Fiber Reformed Epoxy Resin Hybrid Composite. Advances in Civil Engineering Materials, 7(1): 538-557.
  • Verma A., Negi P., Singh V.K. 2019. Experimental analysis on carbon residuum transformed epoxy resin: Chicken feather fiber hybrid composite. Polymer Composites, 40(7): 2690-2699.
  • Yastrebinski R.N., Cherkashina N.I., Yastrebinskaya A.V., Noskov A.V. 2016. Energy losses of fast electrons when passing through the radiation-protective iron-oxide composite. Problems of Atomic Science and Technology, 4(104): 9-14.
  • Zou J., Yip H.-L., Hau S.K., Jen A.K.-Y. 2010. Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Applied Physics Letters, 96(20): 203-301.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69eaac07-b937-490b-81a9-6ca41060790e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.