PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Streaming electrification of insulating liquid mixtures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Extensive efforts have been made for many years by the power generating industry to replace conventional solid and liquid insulation with synthetic materials. Those measures are aimed at increasing the load capacity, improved fire safety and extending transformer life during exploitation. Modern insulating materials include aramid fibre-based paper and insulating fluids made of synthetic and natural esters. The paper presents research results of the electrostatic charging tendency (ECT) of mixtures of fresh and aged mineral oil Trafo En with synthetic ester Midel 7131 and natural ester Midel 1204. The measurements were taken in a flow-through system using the pipes made of metal, cellulose and aramid paper. The influence of the liquid flow velocity, the type of material of the measuring pipe and the mixture content on the level of the streaming electrification current generation was determined.
Rocznik
Strony
387--397
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wz.
Twórcy
  • Faculty of Electrical Engineering, Automatic Control and Informatics Opole University of Technology Prószkowska 76, 45-758 Opole, Poland
  • Faculty of Electrical Engineering, Automatic Control and Informatics Opole University of Technology Prószkowska 76, 45-758 Opole, Poland
Bibliografia
  • [1] Binns D.F., Yoon K.T., Comparison between Insulating Properties of Transformer Oil and a Lowflammability Ester Midel 7131, IEE Physical Science, Measurement and Instrumentation, vol. 129, pp. 182–185 (1982).
  • [2] Borsi H., Gockenbach E., Properties of Ester Liquid Midel 7131 as an Alternative Liquid to Mineral Oil for Transformers, International Conference on Dielectric Liquids (ICDL), Coimbra, Portugal, pp. 377–380 (2005).
  • [3] Wang Z.D., Darwin A., Martin R., New Insulation Fluids: Use of Environmentally Friendly Fluids in Power Transformers, CIGRE Colloquium, Bruges, Belgium, pp. 04–07 (2007).
  • [4] Perrier C., Beroual A., Experimental Investigations on Insulating Liquids for Power Transformers: Mineral, Ester, and Silicone Oils, IEEE Electrical Insulation Magazine, vol. 25, pp. 6–13 (2009).
  • [5] Arazoe S., Saruhashi D. at al., Electrical Characteristics of Natural and Synthetic Insulating Fluids, Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 2, pp. 506–512 (2011).
  • [6] Prevost T., Franchek M., Conductor Insulation Tests in Oil: Aramid vs. Kraft, IEEE Electrical Insulation Magazine, vol. 5, pp. 10–14 (1989).
  • [7] Bhatia A., Aramid Papers with Improved Dimensional Stability, Electrical and Electronics Insulation Conference, Rosemont, USA, pp. 409–410 (1995).
  • [8] Odiot E., Marc L. et al., Electrical Characterization of Aramid Organic and Inorganic Papers and Polyester Films Submitted to AC Electrical Fields, Conference on Electrical Insulation and Dielectric Phenomena, Austin, USA, pp. 585–588 (1999).
  • [9] Ul-Haq S., Influence of Moisture on Dielectric Strength in Polyamide (Aramid) Paper, Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, USA, pp. 325–328 (2003).
  • [10] Huifang Z., Study of Structure – Properties Relationship of Aramid Paper: Application of Image Processing Technology, IEEE 11th International Conference on Computer-Aided Industrial Design and Conceptual Design (CAIDCD), Yiwu, China, pp. 1209–1212 (2010).
  • [11] Filliben S.A., New Test Method to Evaluate the Thermal Aging of Aramid Materials, Electrical Insulation Conference (EIC), Annapolis, USA, pp. 449–453 (2011).
  • [12] Tagaki T., Ishi T. et al., Reliability Improvement of 500kV Large Capacity Power Transformer, CIGRES12, Session Paper 12-02, Paris (1978).
  • [13] Krause Ch., Moser H.P. et al., Electrostatic Charging in Large Models of Power Transformer Cooling Ducts, CIGRE, Session JWG12/15.13 TF-01, TF-02, Paris (1992).
  • [14] Lindgren S.R.,Washabaugh A.P., Zahn M. at al, Temperature and Moisture Transient Effects on Flow Electrification in Power Transformers, CIGRE, General Session, Paper 15/12-02, Paris (1992).
  • [15] Praxl G., Lemesch G., Static Electrification in Power Transformers, Report by JWG 12/15.13 Task Force 01, CIGRE WG 15.01, Boston (1997).
  • [16] Sierota A., Rungis J., Electrostatic Charging in Transformers Oils. Testing and Assessment, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 1, no. 5, pp. 804–870 (1994).
  • [17] Higaki M., Kako Y. et al., Static Electrification and Partial Discharges Caused by Oil Flow in Forced Oil Cooled Core Type Transformers, IEEE Transactions on Power Apparatus and Systems, vol. 98, no. 4, pp. 1259–1267 (1979).
  • [18] Krause Ch., Knoll E. et al., Impact of AC-Fields on Dielectric Charging in a Full-Scale Power Transformer, 9th Int’l. Symposium on High Voltage Engineering, Ref. 1080/1-1080/4, Graz, Austria (1995).
  • [19] Klinkenberg A., Van Der Minne I.L., Electrostatics in the Petroleum Industry, Elsevier (1958).
  • [20] Oommen T.V., Petrie E.M., Electrostatic Charging Tendency of Transformer Oils, IEEE Transactions on Power Apparatus and Systems, vol. 103, no. 7, pp. 1923–1931 (1984).
  • [21] Oommen T.V., Static Electrification Properties of Transformer Oil, IEEE Transactions on Electrical Insulation, vol. 23, no. 1, pp. 123–128 1988.
  • [22] Kędzia J., Measurement of the Electrification of Liquids in the Rotating Cylinder System, Journal of Electrostatics, vol. 20, no. 3, pp. 305–312 (1988).
  • [23] Morin A.J., Zahn M., Melcher J.R., Fluid Electrification Measurements of Transformer Pressboard/oil Insulation in a Couette Charger, IEEE Transactions on Electrical Insulation, vol. 26, no. 5, pp. 870–899(1991).
  • [24] Nelson J.K., Lee M.J., Tandem-Chamber Charge Density Monitor, IEEE Transactions on Electrical Insulation, vol. 25, no. 2, pp. 399–404 (1990).
  • [25] Morin A.J., Zahn M. et al., An Absolute Charge Sensor For Fluid Electrification Measurements, IEEE Transactions on Electrical Insulation, vol. 26, no. 2, pp. 181–199 (1991).
  • [26] Zmarzły D., Kędzia J., A Noise Analyzer for Monitoring Static Electrification Current, Journal of Electrostatics, vol. 63, no. 5, pp. 409–422 (2005).
  • [27] Zdanowski M., Wolny S. et al., The Analysis and Selection of the Spinning Disk System Parameters for The Measurement of Static Electrification of Insulation Oils, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 14, no. 2, pp. 480–486 (2007).
  • [28] Touchard G., Mas P. et al., Static Electrification in Power Transformers: Correlation between Charge Generation and ECT-TanParameters for Different Oil-Pressboard Couples, Proceedings of 1999 IEEE 13th International Conference on Dielectric Liquids (ICDL’99), pp. 396–399 (1999).
  • [29] Ren S., Li H. et al., Research on Streaming Electrification of Insulation Mineral Oil, IEEE 9th Internaitonal Conference on Properties and Applications of Dielectric Materials, pp. 988–991 (2009).
  • [30] Beroual A., Fleszynski J., Rottenberg W., Influence of Coating of Metallic Surface on Static Electrification Phenomena of Transformer Oils, Electrical Review (in Polish), vol. 85, no. 6, pp. 182–187 (2009).
  • [31] Vihacencu M.S., Notingher P.V. et al., Flow Electrification Phenomenon for Newtonian and Non-Newtonian Liquids: Influence of Liquid Conductivity, Viscosity and Shear Stress, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 21, no. 2, pp. 693–703 (2014).
  • [32] Fofana I., Bouslimi Y. et al., Relationship between Static Electrification of Transformer Oils with Turbidity and Spectrophotometry Measurements, International Journal of Electrical Power and Energy Systems, vol. 54, pp. 38–44 (2014).
  • [33] Ishikawa T., Yasuda K.T. et al., Effect of Temperature on the Streaming Electrification Characteristics of Silicone Oil, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 1, pp. 273–280 (2009).
  • [34] Nakajima A., Miyahara H. et al., Streaming Electrification Characteristics of Silicone Oil, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 2, pp. 519–526 (2008).
  • [35] ZeluY., Paillat T. et al., Study on FlowElectrification Hazards with Ester Oils, International Conference on Dielectric Liquids (ICDL), Trondheim, Norway, paper 13 (2011).
  • [36] Talhi M., Fofana I., Flazi S., Comparative Study of the Electrostatic Charging Tendency between Synthetic Ester and Mineral Oil, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 5, pp. 1598–1606 (2013).
  • [37] Zdanowski M., Streaming Electrification of Mineral Insulating Oil and Synthetic Ester MIDEL 7131®, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 21, no. 3, pp. 1127–1132 (2014).
  • [38] Zdanowski M., Wolny S. et al., ECT of Ethanol And Hexane Mixtures in The Spinning Disc System, Journal of Electrostatics, vol. 65, no. 4, pp. 239–243 (2007).
  • [39] Zdanowski M., K˛edzia J., Research on the Electrostatic Properties of Liquid Dielectric Mixtures, Journal of Electrostatics, vol. 65, no. 8, pp. 506–510 (2007).
  • [40] Zdanowski M., Influence of Composition of Dielectric Liquid Mixtures on Electrostatic Charge Tendency and Physicochemical Parameters, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 2, pp. 527–532 (2008).
  • [41] Touchard G., Streaming Currents Developed in Laminar and Turbulent Flows Through a Pipe, Journal of Electrostatics, vol. 5, pp. 463–473 (1978).
  • [42] Washabaugh A.P., von Guggenberg P.A. et al., Temperature and Moisture Transient Flow Electrification Measurements of Transformer Pressboard/Oil Insulation Using a Couette Facility, IEEE 3rd Internaitonal Conference on Properties and Applications of Dielectric Materials, Tokyo, Japan, vol. 2, pp. 867–870 (1991).
  • [43] Kędzia J., Electrostatic Properties of Aged Transformer Oil, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 2, pp. 175–185 (1989).
  • [44] Ren S., Liu Q. et al., Electrostatic Charging Tendency and Correlation Analysis of Mineral Insulation Oils Under Thermal Aging, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 2, pp. 499–505 (2011).
  • [45] Poovamma P.K., Jagadish R., Influence of Surface Roughness and Thickness of Pressboard on the Charging Characteristics of Transformer Oil, IEEE International Symposium on Electrical Insulation, Pittsburgh, pp. 526–529 (1994).
  • [46] Abedian B., Sonin A.A., Theory for electric charging in turbulent pipe flow, Journal of Fluid Mechanics, vol. 120, pp. 199–217 (1981).
  • [47] Zdanowski M., Ozon T., Measuring system for a streaming electrification tests of insulating liquids, Poznan University of Technology Academic Journals, Electrical Engineering (in Polish), no. 86, pp. 393–403 (2016).
  • [48] Zdanowski M., Statistical verification of the results of streaming electrification research of insulating liquids, Poznan University of Technology Academic Journals (in Polish), Electrical Engineering, no. 90, pp. 21–32 (2017).
  • [49] Lalik M., Maleska M., Zdanowski M., Determination of basic physical and electric propetries estru Midel 7131®, PoznanUniversity of TechnologyAcademic Journals (in Polish), Electrical Engineering, no. 94, pp. 331–342 (2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69e9e842-e0d5-404b-9446-fc8fbec60631
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.