PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of gamma irradiation to stimulate bioactive compound synthesis in Inonotus obliquus submerged cultures

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Inonotus obliquus is a parasite on the birch and other trees and is also a well-known medicinal mushroom. Its sterile conk is highly sought for its bioactive compounds such as phenols, polysaccharides, triterpenoids, and steroids. It was traditionally used to treat various gastrointestinal diseases, viral and parasitic infections, to counteract the progression of cancers, and to stimulate the immune system. We used acute gamma irradiation, followed by short-term submerged cultivation, as an oxidative stress inducer to enhance the synthesis of mycelial metabolites. The 300 Gy and 400 Gy doses showed the best results across the whole experimental design. Each assayed criterion had a different corresponding optimal stimulation dose. In one experiment, sublethal doses of irradiation triggered the dry weight of the cultured mycelium to increase by 19.764%. The free radical scavenging potential of the mycelium extracts increased by 79.83%. The total phenolic content of mycelium extracts and culture broth increased by 55.7% and 62.987%, respectively. The total flavonoid and sinapinic acid content of the broth increased by 934.678% and 590.395%, respectively. As such, gamma irradiation pretreatment of the mycelial inoculum proved an interesting, economically and environmentally effective tool for stimulating secondary metabolite synthesis in submerged mycelium cultures.
Czasopismo
Rocznik
Strony
83--90
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
  • Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania and University of Agricultural Sciences
  • and Veterinary Medicine of Bucharest, Bucharest, Romania
autor
  • Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania
  • Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania
  • National Institute of Research and Development for Biological Science (INCDSB), Bucharest, Romania
  • University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
Bibliografia
  • 1. Lee, M. W., Hur, H., Chang, K. C., Lee, T. S., Ka, K. H., & Jankovsky, L. (2008). Introduction to distribution and ecology of sterile conks of Inonotus obliquus. Mycobiology, 36(4), 199–202.
  • 2. Zheng, W., Miao, K., Zhao, Y., & Zhang, M. (2009a). Nitric oxide mediates fungalelicitor-enhanced biosynthesis of antioxidant polyphenols in Inonotus obliquus in submerged cultures. Microbiology, 155, 3340–334. DOI: 10.1099/mic.0.030650-0.
  • 3. Kim, Y. J., Park, J., Min, B. S., & Shim, S. H. (2011). Chemical constituents from the sclerotia of Inonotus obliquus. J. Korean Soc. Appl. Biol. Chem., 54, 287–294. https://doi.org/10.3839/jksabc.2011.045.
  • 4. Cui, Y., Kim, D. S., & Park, K. C. (2005). Antioxidant effect of Inonotus obliquus. J. Ethnopharmacol., 96(1/2), 79–85. DOI: 10.1016/j.jep.2004.08.037.
  • 5. Wang, Z. H., Huo, Y. F., Wang, B., & Shen, J. W. (2006). Study on submerged cultures of Inonotus obliquus. Mycosystema, 25, 461–467. DOI: 10.4489/MYCO.2008.36.4.199.
  • 6. Zheng, W., Zhang, M., Zhao, Y., & Wang, Y. (2009b). Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Biores. Technol., 100, 1327–1335. DOI: 10.1016/j.biortech.2008.05.002.
  • 7. Kim, J. H., Sung, N. Y., Kwon, S. K., Srinivasan, P.,Song, B. S., Choi, J. I., Yoon, Y., Kim, J. K., Byun, M.W., Kim, M. R., & Lee, J. W. (2009). γ-Irradiation improves the color and antioxidant properties of Chaga mushroom (Inonotus obliquus) extract. J. Med. Food, 12(6), 1343–1347. DOI: 10.1089/jmf.2008.1281.
  • 8. Fernandes, A., Antonio, A. L., Oliveira, M. B., Martins, A., & Ferreira, I. C. (2012). Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: a review. Food Chem., 135(2), 641–650. DOI: 10.1016/j.foodchem.2012.04.136.
  • 9. Shen, Q., Zhang, B., Xu, R., Wang, Y., Ding, X., & Li, P. (2010). Antioxidant activity in vitro of seleniumcontained protein from the Se-enriched. Bifodobacterium animalis 01. Anaerobe, 16, 380–386. DOI: 10.1016/j.anaerobe.2010.06.006.
  • 10. Singleton, V., & Rossi, J. (1965). Colorimetry of total phenolic compounds with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult., 16, 144–158.
  • 11. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total fl avonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal., 10(3), 178–182. DOI:10.38212/2224-6614.2748.
  • 12. Matei, A. O., Gatea, F., Teodor, E. D., & Radu, G. L. (2016). Polyphenols analysis from different medicinal plants extracts using capillary zone electrophoresis (CZE). Rev. Chim., 67(6), 1051–1055.
  • 13. Choi, J. -I., Yoon, M., Lim, S., Kim, G. -H., & Park, H. (2015). Effect of gamma irradiation on physiological and proteomic changes of Arctic Zygnema sp. (Chlorophyta, Zygnematales). Phycologia, 54(4), 333–341. DOI: 10.2216/14-106.1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Identyfikator YADDA
bwmeta1.element.baztech-69e8f60c-86f6-4b24-ae6f-c3d5e19b2e0c