Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Research was carried out in order to assess biodegradability of degradable/biodegradable materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive) or made of polyethylene (PE) with the addition of pro-oxidant additive (d2w additive), advertised as 100% degradable or certifi ed as compostable within various types of environments. Research conditions were: (i) controlled composting environment – laboratory-scale, (ii) real composting conditions – domestic compost bin, (iii) real composting conditions – industrial composting plant and (iv) landfill conditions. The results demonstrate that the materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive) or made of polyethylene (PE) with the addition of pro-oxidant additive (d2w additive) or advertised as 100% degradable did not biodegrade in any of the above-described conditions and remained completely intact at the end of the tests. Biodegradation of the certified compostable plastic bags proceeded very well in laboratory-scale conditions and in real composting conditions – industrial composting plant, however, these materials did not biodegrade in real composting conditions – domestic compost bin and landfill conditions.
Rocznik
Tom
Strony
3--14
Opis fizyczny
Bibliogr. 30 poz., tab., zdj.
Twórcy
autor
- Mendel University in Brno, Faculty of AgriSciences, Department of Applied and Landscape Ecology, Zemědělská 1, 613 00 Brno, Czech Republic
autor
- Szkoła Główna Gospodarstwa Wiejskiego, Wydział Budownictwa i Inżynierii Środowiska, ul. Nowoursynowska 159, 02-787 Warszawa, Poland
autor
- Szkoła Główna Gospodarstwa Wiejskiego, Wydział Budownictwa i Inżynierii Środowiska, ul. Nowoursynowska 159, 02-787 Warszawa, Poland
autor
- Mendel University in Brno, Faculty of AgriSciences, Department of Applied and Landscape Ecology, Zemědělská 1, 613 00 Brno, Czech Republic
autor
- Mendel University in Brno, Faculty of AgriSciences, Department of Applied and Landscape Ecology, Zemědělská 1, 613 00 Brno, Czech Republic
Bibliografia
- Adamcová, D., Vaverková M. and Toman, F. (2013). Repeated research of biodegradability of plastics materials in real composting conditions. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61, 6, 1557-1564.
- Adamcová, D. and Vaverková, M. (2014). Degradation of biodegradable/degradable plastics in municipal solid waste landfill. Polish Journal of Environmental Studies 23, 4, 1071-1078.
- Balaguer, M.P., Villanova, J., Cesar, G., Gavara, R. and Hernandez-Munoz, P. (2015). Compostable properties of antimicrobial bioplastics based on cinnamaldehyde cross-linked gliadins. Chemical Engineering Journal, 262(15), 447-455.
- Bespalov, V.I., Gurova, O.S. and Samarskaya, N.S. (2016). Main principles of the atmospheric air ecological monitoring organization for urban environment mobile pollution sources. Procedia Engineering, 150, 2019-2024.
- Cho, H.S., Moon, H.S., Kim, M., Nam, K. and Kim, J.Y. (2010). Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly (butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Management, 31, 3, 475-480.
- CSU Chico (California State University at Chico). (2007). Performance Evaluation of Environmentally Degradable Plastic Packaging and Food Service Ware. California Integrated Waste Management Board, Sacramento, CA. Available at: http://www.calrecycle.ca.gov/Publications/Documents/Plastics/43208001.pdf.
- ExcelPlas Australia, Centre for Design at RMIT, and Nolan-ITU. (2004) (first released 2003). The Impacts of Degradable Plastic Bags in Australia. Centre for Design at RMIT, Melbourne, Australia. Available at: http://tuiservices.com.au/files/degradables.pdf.
- Farrington, D.W., Lunt, J., Davies, S. and Blackburn, R.S. (2005). 6-Poly (lactic acid) fibers. In Biodegradable and sustainable fibers (pp. 191-220).
- Fronczyk, J., Lech, M., Radziemska, M. and Sychowicz, J. (2016). Wybrane parametry fizyko-chemiczne gleb wzdłuż trasy komunikacyjnej zlokalizowanej na obszarach cennych ekologicznie. Scientific Review – Engineering and Environmental Sciences, 71, 21-30.
- Fronczyk, J., Radziemska, M. (2016). Removal of copper(II) ions from groundwater using powdered devonian dolomite in premeable reactive barriers. Carpathian Journal of Earth and Environmental Sciences, 11, 1, 113-121.
- Harding, K.G., Gounden, T. and Pretorius, S. (2016). “Biodegradable” Plastics: A Myth of Marketing? Procedia Manufacturing, 7, 106-110.
- Iovino, R., Zullo, R., Rao, M.A., Cassar, L. and Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93, 147-157.
- ISO 20200:2004. Plastics – Determination of the degree of disintegration of plastic materials under simulated composting conditions in laboratory-scale test.
- Ishigaki, T., Sugano, W., Nakanishi, A., Tateda, M., Ike, M. and Fujita, M. (2004). The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere, 54, 3, 225-233.
- Jakovcevic, A., Steg, L., Mazzeo, N., Caballero, R., Franco, P., Putrino, N. and Favara, J. (2014). Charges for plastic bags: Motivational and behavioral effects. Journal of Environmental Psychology, 40, 372-380.
- Kale, G., Auras, R. and Singh, P.S. (2006). Degradation of commercial biodegradable packages under real composting and ambient exposure conditions. Journal of Polymers and the Environment, 14, 3, 317-334.
- Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Susan, E,. Selke and Singh, S. (2007a). Compostability of bioplastic packaging materials: An overview. Macromolecular Bioscience, 7, 255-277.
- Kale, G., Auras, R., Singh, S. and Narayan, R. (2007b). Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Testing, 26, 1049-1061.
- Mohee, R. and Unmar, G. (2007). Determining biodegradability of plastic materials under controlled and natural composting environments. Waste Management, 27, 1486-1493.
- Radziemska, M. and Fronczyk, J. (2015). Level and contamination assessment of soil along an expressway in an ecologically valuable area, Central Poland. International Journal of Environmental Research and Public Health, 12, 13372-13387.
- Rozbicka K. and Rozbicki T. (2014). Spatiotemporal variations of tropospheric ozone concentrations in the Warsaw Agglomeration (Poland). Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation, 46, 3, 247-261.
- Sivan, A. (2011). New perspectives in plastic biodegradation. Current Opinion in Biotechnology, 22, 3, 422-426.
- Searle, N.D. (2003). Environmental effects on polymeric materials. New York: John Wiley and Sons.
- Song, J.H., Murphy, R.J., Narayan, R. and Davies, G.B.H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1526, 2127-2139.
- Swift, G. and Wiles, D.M. (2004). Biodegradable polymers and plastics in landfill sites. In: Encyclopedia of Polymer Science and Technology. (pp. 40-50) John Wiley & Sons. Available at: http://onlinelibrary.wiley.com/doi/10.1002/0471440264.pst457/pdf.
- Tonjes, D.J. and Greene, K.L. (2013). Degradable Plastics and Solid Waste Management Systems. Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University.
- Vaverková, M., Adamcová, D. and Zloch, J., (2014a). How do degradable/biodegradable plastic materials decompose in home composting environment? Journal of Ecological Engineering, 15, 4, 82-89.
- Vaverková, M., Adamcová, D., Kotvicová, J. and Toman, F. (2014b). Evaluation of biodegradability of plastics bags in composting conditions. Ecological Chemistry and Engineering S, 21, 1, 45-57.
- Vaverková, M., Toman, F., Adamcová, D. and Kotvicová, J. (2012). Study of the biodegrability of degradable/biodegradable plastic material in a controlled composting environment. Ecological Chemistry and Engineering S, 19, 3, 347-358.
- Wang, Q. and Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358-365.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69e55ef7-efca-4d49-b2c6-d598fe3bf132