Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A general classification of facility layout criteria, including the planning approach, material handling configuration, department area, layout generation approach, metaheuristic approach, and layout evaluation approach has been achieved through numerous reviews of facility layout. Based on dynamic planning approach research, the companies and industries as significant users of the facility layout, necessitate a more detailed and exhaustive review of the layout optimization (re-layout) strategy. However, that review remains incomplete. This paper aims to fill the gap between the industry's practical needs and existing research on dynamic planning facility layout by conducting a literature review to identify various facility layout criteria and factors categorized by industry layout type, providing companies with clearer guidance for their layout decisions. A reference that provides a comprehensive analysis of the relevant characteristics, methods, and factors in determining layout types will be helpful to decision-makers as a strategy in facility layout. This literature review analyzed 44 articles from the Scopus database between 2014 and 2024. These articles were selected through a screening process from 1278 articles using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method which has proven effective in obtaining key articles on specific research topics. The results of this review present a classification of facility layout criteria based on layout type in industries complemented by the development of a checklist as an initial screening tool for the industry to optimize the layout. Further, it enhances the theoretical advancement of the dynamic planning approach by identifying areas for future investigation.
Czasopismo
Rocznik
Tom
Strony
27--40
Opis fizyczny
Bibliogr. 91 poz., rys., tab.
Twórcy
autor
- Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Grafika Street No. 2 Yogyakarta 55281, Indonesia
- Department of Industrial Engineering, Universitas PGRI Madiun, Auri Street No. 14-15 Madiun East Java 55292, Indonesia
autor
- Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Grafika Street No. 2 Yogyakarta 55281, Indonesia
autor
- Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Grafika Street No. 2 Yogyakarta 55281, Indonesia
Bibliografia
- 1. Adeyeri, M.K., Ayodeji, S.P., 2022. Comparative analysis of static and dynamic facility layouts design using the modeling of plantain flour as case study. Prod. Eng. Arch. 28, 12–20. DOI: 10.30657/pea.2022.28.02
- 2. Adeyeri, M.K., Ayodeji, S.P., Adeleye, A., 2021. Modelling of Facility Layout Improvement and Breakeven Point Forecast for Plantain Flour Production. Int. J. Integr. Eng. 13, 1–6. DOI: 10.30880/ijie.2021.13.01.001
- 3. Ahmadi-Javid, A., Ardestani-Jaafari, A., 2021. The unequal area facility layout problem with shortest single-loop AGV path: how material handling method matters. Int. J. Prod. Res. 59, 2352–2374. DOI: 10.1080/00207543.2020.1733124
- 4. Al-Zubaidi, S.Q.D., Fantoni, G., Failli, F., 2021. Analysis of drivers for solving facility layout problems: Literature review. J. Ind. Inf. Integr. 21, 100187. DOI: 10.1016/j.jii.2020.100187
- 5. Annamalai, S., Vinoth, K., Bagathsingh, N., 2020. Analysis of lean manufacturing layout in a textile industry. Mater. Today Proc. 33, 3486– 3490. DOI: 10.1016/j.matpr.2020.05.409
- 6. Arifin, H., 2020. Penerapan Metode Analisis Beban Kerja untuk Meningkatkan Produktivitas di Bagian Case Assy Up di PT. Yamaha Indonesia. Teknoin 26, 83–95. DOI: 10.20885/teknoin.vol26.iss2.art1
- 7. Azadeh, A., Motevali Haghighi, S., Asadzadeh, S.M., 2014. A novel algorithm for layout optimization of injection process with random demands and sequence dependent setup times. J. Manuf. Syst. 33, 287– 302. DOI: 10.1016/j.jmsy.2013.12.008
- 8. Azimi, P., Soofi, P., 2017. An ANN-based optimization model for facility layout problem using simulation technique. Sci. Iran. 24, 364–377. DOI: 10.24200/sci.2017.4040
- 9. Baykasoğlu, A., Nabil N.Z. Gindy, 2001. A simulated annealing algorithm for dynamic layout problem. Comput. Oper. Res. 28, 1403–1426.
- 10. Benjaafar, S., Sunderesh S, H., Shahrukh A, I., 2002. Next generation factory layouts: Research challenges and recent progress. J. Allergy Clin. Immunol. 130, 556.
- 11. Besbes, M., Affonso, R.C., Zolghadri, M., Masmoudi, F., Haddar, M., 2017. Multi-criteria decision making for the selection of a performant manual workshop layout: a case study. IFAC-PapersOnLine 50, 12404–12409. DOI: 10.1016/j.ifacol.2017.08.2424
- 12. Bozorgi, N., Abedzadeh, M., Zeinali, M., 2015. Tabu search heuristic for efficiency of dynamic facility layout problem. Int. J. Adv. Manuf. Technol. 77, 689–703. DOI: 10.1007/s00170-014-6460-9
- 13. Brunoro Ahumada, C., Quddus, N., Mannan, M.S., 2018. A method for facility layout optimisation including stochastic risk assessment. Process Saf. Environ. Prot. 117, 616–628. DOI: 10.1016/j.psep.2018.06.004
- 14. de Lira-Flores, J.A., López-Molina, A., Gutiérrez-Antonio, C., VázquezRomán, R., 2019. Optimal plant layout considering the safety instrumented system design for hazardous equipment. Process Saf. Environ. Prot. 124, 97–120. DOI: 10.1016/j.psep.2019.01.021
- 15. Derakhshan Asl, A., Wong, K.Y., 2017. Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization. J. Intell. Manuf. 28, 1317–1336. DOI: 10.1007/s10845- 015-1053-5
- 16. Drira, A., Pierreval, H., Hajri-Gabouj, S., 2007. Facility layout problems: A survey. Annu. Rev. Control 31, 255–267. DOI: 10.1016/j.arcontrol.2007.04.001
- 17. Duan, S., Kang, L., 2022. An Enhanced Multiobjective Double Row Layout Model considering the Machine Breakdowns. Comput. Intell. Neurosci. 2022. DOI: 10.1155/2022/6289609
- 18. Emami, S., Ali S, N., 2013. Managing a new multi-objective model for the dynamic facility layout problem. Int. J. Adv. Manuf. Technol. 68, 2215– 2228
- 19. Erik, A., Kuvvetli, Y., 2021. Integration of material handling devices assignment and facility layout problems. J. Manuf. Syst. 58, 59–74. DOI: 10.1016/j.jmsy.2020.11.015
- 20. Esmikhani, S., Kazemipoor, H., Sobhani, F.M., Molana, S.M.H., 2022. Solving fuzzy robust facility layout problem equipped with cranes using MPS algorithm and modified NSGA-II. Expert Syst. Appl. 210, 118402. DOI: 10.1016/j.eswa.2022.118402
- 21. Ferreira, W. de P., Armellini, F., De Santa-Eulalia, L.A., 2020. Simulation in industry 4.0: A state-of-the-art review. Comput. Ind. Eng. 149, 106868. DOI: 10.1016/j.cie.2020.106868
- 22. Flores-Siguenza, P., Siguenza-Guzman, Lorena Lema, F., Tigre, F., Vanegas, P., Aviles-González, J., 2022. A Systematic Literature Review of Facility Layout Problems and Resilience Factors in the Industry. pp. 252–264.
- 23. Garbie, I., 2014. Performance analysis and measurement of reconfigurable manufacturing systems. J. Manuf. Technol. Manag. 25, 934–957. DOI: 10.1108/JMTM-07-2011-0070
- 24. Ghosh, T., Doloi, B., Dan, P.K., 2016. Applying soft-computing techniques in solving dynamic multi-objective layout problems in cellular manufacturing system. Int. J. Adv. Manuf. Technol. 86, 237–257. DOI: 10.1007/s00170-015-8070-6
- 25. Golmohammadi, A.-M., Honarvar, M., Hosseini-Nasab, H., TavakkoliMOghaddam, R., 2018. Machine Reliability in a Dynamic Cellular Manufacturing System: A Comprehensive Approach to a Cell Layout Problem. Int. J. Ind. Eng. Prod. Res. 29, 175–196. DOI: 10.22068/ijiepr.29.2.175
- 26. Golmohammadi, A.M., Honarvar, M., Tavakkoli-Moghaddam, R., HosseiniNasab, H., 2021a. A novel cell layout problem with reliability and stochastic failures. Int. J. Supply Oper. Manag. 8, 165–175. DOI: 10.22034/IJSOM.2021.2.4
- 27. Golmohammadi, A.M., Rasay, H., Akhoundpour Amiri, Z., Solgi, M., Balajeh, N., 2021b. Soft Computing Methodology to Optimize the Integrated Dynamic Models of Cellular Manufacturing Systems in a Robust Environment. Math. Probl. Eng. 2021. DOI: 10.1155/2021/3040391
- 28. Gong, J., Zhang, Z., Liu, J., Guan, C., Liu, S., 2021. Hybrid algorithm of harmony search for dynamic parallel row ordering problem. J. Manuf. Syst. 58, 159–175. DOI: 10.1016/j.jmsy.2020.11.014
- 29. Guan, C., Zhang, Z., Zhu, L., Liu, S., 2022. Mathematical formulation and a hybrid evolution algorithm for solving an extended row facility layout problem of a dynamic manufacturing system. Robot. Comput. Integr. Manuf. 78, 102379. DOI: 10.1016/j.rcim.2022.102379
- 30. Halawa, F., Madathil, S.C., Gittler, A., Khasawneh, M.T., 2020. Advancing evidence-based healthcare facility design: a systematic literature review. Health Care Manag. Sci. 23, 453–480. DOI: 10.1007/s10729-020-09506- 4
- 31. Heragu, S.S., 2006. Facilities Design Second Edition, 2nd ed. iUniverse, Bloomington, Indiana
- 32. Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S.M.T., Fakhrzad, M.B., 2018. Classification of facility layout problems: a review study. Int. J. Adv. Manuf. Technol. 94, 957–977. DOI: 10.1007/s00170-017-0895-8
- 33. Hunagund, I.B., Pillai, V.M., Kempaiah, U.N., 2022. A survey on discrete space and continuous space facility layout problems. J. Facil. Manag. 20, 235. DOI: 10.1108/JFM-02-2021-0019
- 34. Hunagund, I.B., Pillai, V.M., Kempaiah, U.N., 2020. Design of robust layout for unequal area dynamic facility layout problems with flexible bays structure. J. Facil. Manag. 18, 361–392. DOI: 10.1108/JFM-04-2020- 0028
- 35. Hunagund, I.B., Pillai, V.M., Kempaiah, U.N., 2018. A simulated annealing algorithm for unequal area dynamic facility layout problems with flexible bay structure. Int. J. Ind. Eng. Comput. 9, 307–330. DOI: 10.5267/j.ijiec.2017.8.004
- 36. Izadinia, N., Eshghi, K., 2016. A robust mathematical model and ACO solution for multi-floor discrete layout problem with uncertain locations and demands. Comput. Ind. Eng. 96, 237–248. DOI: 10.1016/j.cie.2016.02.026
- 37. Izadinia, N., Eshghi, K., Salmani, M.H., 2014. A robust model for multi-floor layout problem. Comput. Ind. Eng. 78, 127–134. DOI: 10.1016/j.cie.2014.09.023
- 38. Khajemahalle, L., Emami, S., Keshteli, R.N., 2021. A hybrid nested partitions and simulated annealing algorithm for dynamic facility layout problem: A robust optimization approach. INFOR 59, 74–101. DOI: 10.1080/03155986.2020.1788328
- 39. Kheirkhah, A., Navidi, H., Messi Bidgoli, M., 2015. Dynamic Facility Layout Problem: A New Bilevel Formulation and Some Metaheuristic Solution Methods. IEEE Trans. Eng. Manag. 62, 396–410. DOI: 10.1109/TEM.2015.2437195
- 40. Kheirkhah, A.S., Bidgoli, M.M., 2016. Dynamic facility layout problem under competitive environment: a new formulation and some meta-heuristic solution methods. Prod. Eng. 10, 615–632. DOI: 10.1007/s11740-016- 0703-6
- 41. Kokkas, A., Vosniakos, G.C., 2019. An Augmented Reality approach to factory layout design embedding operation simulation. Int. J. Interact. Des. Manuf. 13, 1061–1071. DOI: 10.1007/s12008-019-00567-6
- 42. Kovács, G., Kot, S., 2017. Facility layout redesign for efficiency improvement and cost reduction. J. Appl. Math. Comput. Mech. 16, 63– 74. DOI: 10.17512/jamcm.2017.1.06
- 43. Kulturel-Konak, S., 2007. Approaches to uncertainties in facility layout problems: Perspectives at the beginning of the 21st Century. J. Intell. Manuf. 18, 273–284. DOI: 10.1007/s10845-007-0020-1
- 44. Lamba, K., Kumar, R., Mishra, S., Rajput, S., 2020. Sustainable dynamic cellular facility layout: a solution approach using simulated annealingbased meta-heuristic. Ann. Oper. Res. 290, 5–26. DOI: 10.1007/s10479- 019-03340-w
- 45. Lan, S., Zhao, J., 2010. Facilities layout optimization method combining human factors and SLP. Proc. - 3rd Int. Conf. Inf. Manag. Innov. Manag. Ind. Eng. ICIII 2010 1, 608–611. DOI: 10.1109/ICIII.2010.151
- 46. Li, Jinying, Tan, X., Li, Jinchao, 2018. Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors. Math. Probl. Eng. 2018. DOI: 10.1155/2018/6040561
- 47. Mohammadi, M., Forghani, K., 2016. Designing cellular manufacturing systems considering S-shaped layout. Comput. Ind. Eng. 98, 221–236. DOI: 10.1016/j.cie.2016.05.041
- 48. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, P., 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6.
- 49. Moslemipour, G., 2018. A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands. J. Ind. Eng. Int. 14, 429–442. DOI: 10.1007/s40092-017-0222- x
- 50. Moslemipour, G., Lee, T.S., Loong, Y.T., 2017. Performance Analysis of Intelligent Robust Facility Layout Design. Chinese J. Mech. Eng. (English Ed. 30, 407–418. DOI: 10.1007/s10033-017-0073-9
- 51. Moslemipour, G., Lee, T.S., Rilling, D., 2012. A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. Int. J. Adv. Manuf. Technol. 60, 11–27. DOI: 10.1007/s00170-011-3614-x
- 52. Murcia, N., Cardin, O., Mohafid, A., Senkel, M.P., 2021. Health-related parameters for evaluation methodologies of human operators in industry: A systematic literature review. Sustain. 13. DOI: 10.3390/su132313387
- 53. Neghabi, H., Eshghi, K., Salmani, M.H., 2014. A new model for robust facility layout problem. Inf. Sci. (Ny). 278, 498–509. DOI: 10.1016/j.ins.2014.03.067
- 54. Nematian, J., 2014. A robust single row facility layout problem with fuzzy random variables. Int. J. Adv. Manuf. Technol. 72, 255–267. DOI: 10.1007/s00170-013-5564-y
- 55. Nenzhelele, T., Trimble, J.A., Swanepoel, J.A., Kanakana-Katumba, M.G., 2023. MCDM Model for Evaluating and Selecting the Optimal Facility Layout Design: A Case Study on Railcar Manufacturing. Processes 11. DOI: 10.3390/pr11030869
- 56. Palubeckis, G., Ostreika, A., Platužienė, J., 2022. A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem. Mathematics 10. DOI: 10.3390/math10132174
- 57. Pattanaik, L.N., Sharma, B.P., 2009. Implementing lean manufacturing with cellular layout: A case study. Int. J. Adv. Manuf. Technol. 42, 772–779. DOI: 10.1007/s00170-008-1629-8
- 58. Pérez-Gosende, P., Mula, J., Diaz-Madroñero, M., 2023a. A conceptual framework for multi-objective facility layout planning by a bottom-up approach. Int. J. Prod. Manag. Eng. 11, 1–16. DOI: 10.4995/ijpme.2023.19006
- 59. Pérez-Gosende, P., Mula, J., Díaz-Madroñero, M., 2023b. A bottom-up multiobjective optimisation approach to dynamic facility layout planning. Int. J. Prod. Res. DOI: 10.1080/00207543.2023.2168308
- 60. Pérez-Gosende, P., Mula, J., Díaz-Madroñero, M., 2020. Overview of dynamic facility layout planning as a sustainability strategy. Sustain. 12, 13–15. DOI: 10.3390/su12198277
- 61. Pourhassan, M.R., Raissi, S., 2017. An integrated simulation-based optimization technique for multi-objective dynamic facility layout problem. J. Ind. Inf. Integr. 8, 49–58. DOI: 10.1016/j.jii.2017.06.001
- 62. Pournaderi, N., Ghezavati, V.R., Mozafari, M., 2019. Developing a mathematical model for the dynamic facility layout problem considering material handling system and optimizing it using cloud theory-based simulated annealing algorithm. SN Appl. Sci. 1, 1–17. DOI: 10.1007/s42452-019-0865-x
- 63. Pourvaziri, H., Pierreval, H., Marian, H., 2021. Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution. Eur. J. Oper. Res. 290, 499–513. DOI: 10.1016/j.ejor.2020.08.012
- 64. Qin, W., Huang, G.Q., 2009. A two-level genetic algorithm for scheduling in assembly islands with fixed-position layouts. Glob. Perspect. Compet. Enterp. Econ. Ecol. - Proc. 16th ISPE Int. Conf. Concurr. Eng. 17–28. DOI: 10.1007/978-1-84882-762-2_2
- 65. Raghavan, V.A., Yoon, S., Srihari, K., 2014. Lean transformation in a high mix low volume electronics assembly environment. Int. J. Lean Six Sigma 5, 342–360. DOI: 10.1108/IJLSS-07-2013-0042
- 66. Riaño, H.B., Escobar, J.W., Linfati, R., Ortiz-Araya, V., 2022. Disciplinary Categorization of the Cattle Supply Chain—A Review and Bibliometric Analysis. Sustain. 14. DOI: 10.3390/su142114275
- 67. Rifai, A.P., Windras Mara, S.T., Ridho, H., Norcahyo, R., 2022. The double row layout problem with safety consideration: a two-stage variable neighborhood search approach. J. Ind. Prod. Eng. 39, 181–195. DOI: 10.1080/21681015.2021.1968964
- 68. Sakhaii, M., Tavakkoli-Moghaddam, R., Bagheri, M., Vatani, B., 2013. A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines. Appl. Math. Model. 40, 169–191. DOI: 10.1016/j.apm.2015.05.005
- 69. Salimpour, S., Pourvaziri, H., Azab, A., 2021. Semi-robust layout design for cellular manufacturing in a dynamic environment. Comput. Oper. Res. 133, 105367. DOI: 10.1016/j.cor.2021.105367
- 70. Seyed, M.G., Rahmani, D., Moslemipour, G., 2020. Routing flexibility for unequal-area stochastic dynamic facility layout problem in flexible manufacturing systems. Int. J. Ind. Eng. Prod. Res. 31, 269–285. DOI: 10.22068/ijiepr.31.2.269
- 71. Sotamba, L.M., Peña, M., Siguenza-Guzma, L., 2024. Driver Analysis to Solve Dynamic Facility Layout Problems: A Literature Review, in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems. pp. 242–249.
- 72. Stephens, M.P., Meyers, F.E., 2013. Manufacturing Facilities Design and Material Handling. Purdue University Press.
- 73. Suhardi, B., Juwita, E., Astuti, R.D., 2019. Facility layout improvement in sewing department with Systematic Layout planning and ergonomics approach. Cogent Eng. 6. DOI: 10.1080/23311916.2019.1597412
- 74. Sule, D.R., 1988. Manufacturing Facilities Location, Planning, and Design. PWS, United States USA.
- 75. Sun, X., Lai, L.F., Chou, P., Chen, L.R., Wu, C.C., 2018. On GPU implementation of the island model genetic algorithm for solving the unequal area facility layout problem. Appl. Sci. 8. DOI: 10.3390/app8091604
- 76. Targhi, N.S., Sabzehparvar, M., Ebrahimnezhad, S., 2019. A Mathematical Model for Robust Facility Layout Problem in 3D Space with Possibility of Floors. Proc. 2019 15th Iran Int. Ind. Eng. Conf. IIIEC 2019 158–164. DOI: 10.1109/IIIEC.2019.8720721
- 77. Tarigan, U., Sinulingga, S., Sutarman, Sembiring, M.T., 2019. Development of Multi-Objective Models in Zone-Based Dynamic Layout: Literature Review. IOP Conf. Ser. Mater. Sci. Eng. 505. DOI: 10.1088/1757- 899X/505/1/012130
- 78. Tayal, A., Solanki, A., Singh, S.P., 2020. Integrated frame work for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic and data envelopment analysis. Sustain. Cities Soc. 62, 102383. DOI: 10.1016/j.scs.2020.102383
- 79. Templier, M., Paré, G., 2015. A framework for guiding and evaluating literature reviews. Commun. Assoc. Inf. Syst. 37, 112–137. DOI: 10.17705/1cais.03706
- 80. Ulutas, B., Islier, A.A., 2015. Dynamic facility layout problem in footwear industry. J. Manuf. Syst. 36, 55–61. DOI: 10.1016/j.jmsy.2015.03.004
- 81. Vieira, E.S., Gomes, J.A.N.F., 2009. A comparison of Scopus and Web of science for a typical university. Scientometrics 81, 587–600. DOI: 10.1007/s11192-009-2178-0
- 82. Vitayasak, S., Pongcharoen, P., 2018. Performance improvement of Teaching-Learning-Based Optimisation for robust machine layout design. Expert Syst. Appl. 98, 129–152. DOI: 10.1016/j.eswa.2018.01.005
- 83. Vitayasak, S., Pongcharoen, P., Hicks, C., 2017. A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. Int. J. Prod. Econ. 190, 146–157. DOI: 10.1016/j.ijpe.2016.03.019
- 84. Wan, X., Zuo, X.Q., Zhao, X.C., 2021. A surrogate model-based hybrid approach for stochastic robust double row layout problem. Mathematics 9. DOI: 10.3390/math9151711
- 85. Wei, X., Yuan, S., Ye, Y., 2019. Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm. Prod. Manuf. Res. 7, 109–124. DOI: 10.1080/21693277.2019.1602486
- 86. Wohlin, C., Mendes, E., Felizardo, K.R., Kalinowski, M., 2020. Guidelines for the search strategy to update systematic literature reviews in softwareengineering. Inf. Softw. Technol. 127, 106366. DOI: 10.1016/j.infsof.2020.106366
- 87. Xiao, Y., Zhang, Y., Kulturel-Konak, S., Konak, A., Xu, Y., Zhou, S., 2021. The aperiodic facility layout problem with time-varying demands and an optimal master-slave solution approach. Int. J. Prod. Res. 59, 5216–5235. DOI: 10.1080/00207543.2020.1775909
- 88. Zha, S., Guo, Y., Huang, S., Wang, F., Huang, X., 2017. Robust Facility Layout Design under Uncertain Product Demands. Procedia CIRP 63, 354–359. DOI: 10.1016/j.procir.2017.03.079
- 89. Zhang, Z., Gong, J., Liu, J., Chen, F., 2022a. A fast two-stage hybrid metaheuristic algorithm for robust corridor allocation problem. Adv. Eng. Informatics 53, 101700. DOI: 10.1016/j.aei.2022.101700
- 90. Zhang, Z., Gong, J., Liu, J., Chen, F., 2022b. A fast two-stage hybrid metaheuristic algorithm for robust corridor allocation problem. Adv. Eng. Informatics 53, 101700. DOI: 10.1016/j.aei.2022.101700
- 91. Zhu, J., Liu, W., 2020. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 123, 321–335. DOI: 10.1007/s11192-020-03387-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69e1e724-a290-4bdc-947a-7973f74bbcd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.