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Abstract: The presented article discusses how to increase heat transfer through ribbed surfaces and it is oriented to the mathematical rep-
resentation of temperature fields and the total thermal flow. The complexity of solving for some types of ribs with variable cross-section re-
quires the application of numerical methods, which are applied consequently to the planar rib as well. In this case there was chosen the fi-
nite-difference method (FDM). During solution of the cylindrical ribs the FDM method is preferably used directly with regard to the complex-
ity of solving for infinite sums and improper integrals in Bessel functions. In conclusion is assessed the application suitability of the calcula-
tion procedure applied to curved ribs. This procedure is usually used to planar ribs.  At the same time it is pointed out the possibility of us-
ing this method for calculation of the total thermal flow through cylindrical ribs, which have got the squared form. 

Key words: Temperature Field, Thermal Flow, Numerical Solution, Finite-Difference Method 

1. INTRODUCTION 

Cooling of energy equipments, transport vehicles, as well as 
electronic components requires intensification of heat transfer 
from a cooled surface. (Increasing the cooling medium speed OR 
Increase of cooling medium speed) Increase of the cooling medi-
um speed often does not produce the expected cooling effect. 
Therefore, the cooling area is increased additionally by means of 
the newly created ribs. In terms of design the ribs can be either 
planar or cylindrical. Determination of the total thermal flow for 
each type of extended surfaces is possible only in the simplified 
cases usually because a solving of the complex non-linear differ-
ential equations of higher order is a task difficult enough. Analysis 
of the differential equation for a planar rib with a constant rib 
cross-section, ignoring radiation, enables to obtain the thermal 
flows and temperature fields using analytical method for various 
boundary conditions (Maga and Harťanský, 2005). 

If there is taken into consideration radiation and dependence 
of the relevant values on the temperature and on the rib length, it 
is therefore necessary to use the numerical mathematics. Evident-
ly, the simplest method of numerical solution for ribs seems to be 
an application of the finite difference method (FDM) (Brestovič 
and Jasminská, 2013; Pyszko et al., 2010; Purcz, 2001). Applica-
tion of this method is necessary also for some simple cases. 
The typical situation is for cylindrical ribs, which temperature fields 
can be determined by means of Bessel functions. These functions 
represent solution of improper integrals and infinite sums. That 
is why it is more suitable to use FDM, which allows to see the 
changes regard changes of all values in relation to a temperature 
and a rib length. 

Introduction of certain simplified assumption enables to elimi-
nate necessity of solution for two and three dimensional heat 
conduction. Typical situation is in the case of curved ribbed sur-
faces or squared ribs. In this situation it is possible to retransform 

a given task to one-dimensional solution with regard to possible 
calculation failure. An advantage is a quick solution process 
(Mlynár and Masaryk, 2012; Ferstl and Masaryk, 2011; Purcz, 
2001).  

This article offers a complex view of the area of rib design 
with various types and demonstrates the new solution possibilities 
for heat transfer using a numerical simulation software. 

2. ANALYTICAL SOLUTION OF HEAT TRANSFER THROUGH 
EXTENDED SURFACES 

Calculation methodology of thermal flows as well as tempera-
ture fields is based on a solution for various types of differential 
equations obtained from analysis of elementary changes concern-
ing investigated values. 

 

Fig. 1. Thermal flows on the simple rib element 

Analytical solution of heat conduction equations is possible 
only in limited situations, whereas it is applied predominately 
for stationary one-dimensional heat conduction or for heat con-
duction with internal sources. More complex geometry volume 
bodies therefore use software tools based on numerical calcula-

mailto:tomas.brestovic@tuke.sk
mailto:natalia.jasminska@tuke.sk
mailto:marian.lazar@tuke.sk


Tomáš Brestovič, Natália Jasminská, Marián Lázár       DOI 10.1515/ama-2015-0013 
Application of Analytical Solution for Extended Surfaces on Curved and Squared Ribs 

76 

tions that are far beyond the capabilities of analytical solutions 
(Stone et al., 2014; Kapjor  et al., 2010; Brestovič et al., 2012). 
A principle of this method consists in a fact that the solution is not 
required for the whole investigated area, but only for finite number 
of strategically chosen points (parts of task). 

It is necessary to take into consideration several assumptions 
for definition of temperature fields as well as for thermal flow along 
the rib length: 
1. The heat conduction in the x-axis direction is one-dimensional 

and conduction perpendicular to the x-axis is neglected. Iso-
thermal surfaces are perpendicular to the x-axis and their cur-
vature is neglected. 

2. The coefficient of heat transfer and the coefficient of thermal 
conductivity are constant along the whole rib surface. 

3. The heat conduction is stationary and the temperature field 
is constant during time. 
According to the thermal flows in the simple rib element, with 

regard to the law of energy conservation, it is evident that the sum 
of conductive thermal flow on the output of element and convec-
tion from external surface equals to the input of thermal flow to the 
element: 

𝑃𝑥 = 𝑃𝑥+d𝑥 + d𝑃k  
(W)  (1) 

Fourier law describes a thermal flow due to conduction 
by relation (Rohsenow et al., 1998; Incropera et al., 2007; 
Rajzinger,  2012): 

𝑃𝑥 = −λ ⋅ 𝐴 ⋅
d𝑇

d𝑥
  

(W)  (2) 

where 𝐴 is a cross-section area in distance 𝑥  (𝑚2), 𝜆 – 
coefficient of thermal conductivity (W ∙ m−1 ∙ K−1). The 
conductive thermal flow in distance x + dx can be given as follows: 

𝑃𝑥+d𝑥 = 𝑃𝑥 +
∂𝑃𝑥

∂𝑥
d𝑥

  
(W)  (3) 

Newton law of heat transfer by convection through the 
elementary surface 𝑑𝐴𝑘, which is written in differential form, 
describes the thermal flow transferred into the surrounding during 
cooling: 

d𝑃k = α ⋅ d𝐴k ⋅ (𝑇 − 𝑇o)
 
(W)  (4) 

where α is heat transfer coefficient (W ∙ m−2 ∙ K−1), 𝑑𝐴𝑘 – 

elementary surface of rib participated in heat convection (m2),  
𝑇 – thermodynamic temperature of the rib element with thickness 

𝑑𝑥 (𝐾), 𝑇𝑜 – ambient thermodynamic temperature (𝐾). 
Joining the relations from (1) to (4) we obtain the relation 

for energy balance of the thermal flows in the form: 

𝑃𝑥 = 𝑃𝑥 +
∂(−λ⋅𝐴⋅

d𝑇

d𝑥
)

∂𝑥
d𝑥 + α ⋅ d𝐴k ⋅ (𝑇 − 𝑇o)

    

(W)  (5) 

After modification of this equation and using derivation rela-
tions we obtain the general differential equation, which describes 
the rib temperature fields as follows: 

d2𝑇

d𝑥2 +
1

𝐴
⋅

d𝐴

d𝑥
⋅

d𝑇

d𝑥
−

α

𝐴⋅λ
⋅

d𝐴k

d𝑥
⋅ (𝑇 − 𝑇o) = 0

    

(6) 

After calculation of temperature behaviour in dependence 
on the rib length it is possible to obtain the conductive thermal 
flow in any distance x according to the relation (2).  

Solving of differential equation is possible to perform if there 
are known geometric, physical and boundary conditions of explic-
itness (Oravec et al., 2010; Vranay, 2012). The simplest situation 

for analytic solution of equation is a planar rib with a constant 
cross-section area. 

2.1. Equation of Energy for Extended Surfaces  
Considering Radiation 

In case that the rib surface emissivity has not got a zero level 
(there is considered a grey body), it is necessary to determine 
the total thermal flow transferred through the rib considering 
its radiation as well. In the next chapter there is supposed a con-
stant value of emissivity on the whole surface of a sole rib, where-
as the ambient effective emissivity equals 1. 

 
Fig. 2.  Description of thermal flows on the simple rib element  
            considering radiation 

The equation of the thermal flow, the relation (1), is supple-
mented with the thermal flow caused by radiation into ambient: 

𝑃𝑥 = 𝑃𝑥+d𝑥 + d𝑃k + d𝑃s  
(W)  (7) 

Elementary radiated thermal flow 𝑑𝑃𝑠 transferred from the rib 
surface into ambient is determined according to the Stefan-
Boltzmann Law: 

d𝑃s = ε ⋅ σ ⋅ d𝐴k ⋅ (𝑇4 − 𝑇o
4)

   
(W)  (8) 

where 𝜎 is the Stefan-Boltzmann constant (W ∙ m−2 ∙ K−4), 𝜀 – 
the rib surface emissivity (-), and 𝑑𝐴𝑘  represents the elementary 

surface participating on the convention and radiation (m2). 
Using addition of the relations (7) and (8) and by means 

of mathematical modification we obtain the final non-linear differ-
ential equation of the second order, which describes a one-
dimensional field of temperature in the rib, considering the radia-
tion. 

d𝐴

d𝑥
⋅

d𝑇

d𝑥
+ 𝐴

d2𝑇

d𝑥2
−

α

λ
⋅

d𝐴k

d𝑥
⋅ (𝑇 − 𝑇o) −

ε⋅σ

λ
⋅

d𝐴k

d𝑥
⋅

(𝑇4 − 𝑇o
4) = 0

  

(9) 

In case of a planar rib with the constant cross-section the 
equation (9) can be simplified as follows: 

d2𝑇

d𝑥2
−

α

λ
⋅

𝑝

𝐴
⋅ (𝑇 − 𝑇o) −

ε⋅σ⋅𝑝

λ
⋅ (𝑇4 − 𝑇o

4) = 0
  

(10) 

where 𝑝 is the perimeter of the rib at a distance 𝑥 from the base 

of rib (𝑚). 
In view of the problematic solution of these types of differential 

equations is more convenient to use iterative-numerical calcula-
tion using the energy balance of the rib element. To simplify the 
calculation in the next section is described a calculation procedure 
using FDM without considering the radiation. 
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3. APPLICATION OF FDM FOR CALCULATION  
OF THERMAL POWER OUTPUT  
AND FIELD OF TEMPERATURE FOR PLANAR RIBS 

Determination of the temperature field along the rib height, 
considering radiation according to the equation (10), is complicat-
ed due to a solution of the non-linear differential equation of the 
second order. At the solution of equation, using the FDM, a set 
of differential equations is created with the polynomial of the 4th 
degree. Therefore, it is more suitable to solve the field of tempera-
ture using an iterative method with the basic equations describing 
the conduction and convection. A calculation of the rib tempera-
tures with neglected radiation is realized through equation (6), 
whereas the first and the second derivations are overwritten 
by using the Taylor series in the following form (herewith the 
derivations of the higher order are neglected): 

d𝑈

d𝑥
=

𝑈𝑖+1 − 𝑈𝑖

Δ𝑥
  

(11) 

d2𝑈

d𝑥2
=

𝑈𝑖−1 − 2 ⋅ 𝑈𝑖 + 𝑈𝑖+1

(Δ𝑥)2
  

(12) 

where  𝑈  is a general variable derivative along the 𝑥 axis, 𝑈𝑖 – is 

a variable in the 𝑖-th node, 𝑈𝑖+1 – is a variable in the (𝑖 + 1) th 

node,  𝑈𝑖−1 –  is a variable in the (𝑖 − 1)th node, ∆𝑥 –  is a 
length of the rib partition  (m). 

In general, it is possible to take into consideration a change 
of all the relevant quantities along the rib length. If the rib is divid-
ed into n equal elements, it is thus necessary to calculate the 𝑛 +
1 temperatures that are mutually dependent in the nodal points.  
With respect to the relations (11) and (12) we obtain a linear 
equation from the relation (6) in the form: 

𝑇𝑖−1 − 2 ⋅ 𝑇𝑖 + 𝑇𝑖+1

(Δ𝑥)2
+

1

𝐴𝑖

⋅
𝐴𝑖+1 − 𝐴𝑖

Δ𝑥
⋅

𝑇𝑖+1 − 𝑇𝑖

Δ𝑥
 

−
α𝑖 ⋅ 𝑝𝑖

𝐴𝑖 ⋅ λ𝑖

⋅ (𝑇𝑖 − 𝑇o) = 0 

 

(13) 

Using a separation of the searched temperatures, the relation 
(13) is modified into the form: 

𝑇𝑖−1 − [2 +
𝐴𝑖+1−𝐴𝑖

𝐴𝑖
+

α𝑖⋅𝑝𝑖

𝐴𝑖⋅λ𝑖
⋅ (Δ𝑥)2] ⋅ 𝑇𝑖 + [1 +

𝐴𝑖+1−𝐴𝑖

𝐴𝑖
] ⋅

𝑇𝑖+1 = −
α𝑖⋅𝑝𝑖⋅(Δ𝑥)2

𝐴𝑖⋅λ𝑖
⋅ 𝑇o

 

(14) 

After introducing of a substitution for the coefficients, which 
are situated in front of the temperatures in the nodal points of the 
discretised rib, the new form of the relation is: 

𝑇𝑖−1 + 𝑎𝑖 ⋅ 𝑇𝑖 + 𝑏𝑖 ⋅ 𝑇𝑖+1 = 𝑐𝑖 
(15) 

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are constants created by means of the next 
substitution according to: 

𝑎𝑖 = − [2 +
𝐴𝑖+1−𝐴𝑖

𝐴𝑖
+

α𝑖⋅𝑝𝑖

𝐴𝑖⋅λ𝑖
⋅ (Δ𝑥)2]

 

(16) 

𝑏𝑖 = 1 +
𝐴𝑖+1−𝐴𝑖

𝐴𝑖
  

(17) 

𝑐𝑖 = −
α𝑖⋅𝑝𝑖⋅(Δ𝑥)2

𝐴𝑖⋅λ𝑖
⋅ 𝑇o

 

(18) 

Equation (15) describes the dependence among the tempera-
ture 𝑇𝑖   in the 𝑖- th node and the temperatures 𝑇𝑖−1 and 𝑇𝑖+1 
in the neighbouring points. The rib is divided into five elements 
of the same length according to  Fig.3; thereby six nodal tempera-
tures are defined. In order to calculate these temperatures it is 

necessary to assembly the same number of linear equations. Rib 
is divided into five elements only for purposes of calculation ex-
emplification. Increase the number of partitions would naturally 
lead to increase in the accuracy of the calculation. 

 
Fig. 3. Illustration of the dipartite rib for FDM 

The equation (15) is valid for the nodal points from 𝑖 =  1 

to 4, which means the creation of an equation system with 4 ones. 
The other relations are given by the boundary conditions: 

1. The temperature of the rib foot is known 𝑇0  =  𝑇𝑝  =  𝑐0. 

2. We consider convection at the rib end, whereas the thermal 
flow, caused by conduction at the rib end, equals to thermal 
flow due to convection from the rib end surface into ambient. 

−λ ⋅
𝑇5−𝑇4

Δ𝑥
= α ⋅ (𝑇5 − 𝑇o)

   
(W ∙ m−2)

 
(19) 

Modifying the relation (19) together with following substitution 

of constants we obtain a relation between the temperature 𝑇4 

and 𝑇5 in the form: 

λ

Δ𝑥
⋅ 𝑇4 − (

λ

Δ𝑥
+ α) ⋅ 𝑇5 = −α ⋅ 𝑇o

 

(W ∙ m−2)
 

(20) 

𝑑 ⋅ 𝑇4 + 𝑒 ⋅ 𝑇5 = 𝑐5  
(W ∙ m−2)

 
(21) 

where 𝑑 and 𝑒 are the substitution of constants of equation (20). 
The system of 6 linear equations can be described in a matrix 

form: 

|𝑎| ⋅ |𝑇| = |𝑐|
   

(22) 

|

|
  

1 0 0 0 0 0
1 𝑎1 𝑏1 0 0 0
0 1 𝑎2 𝑏2 0 0
0 0 1 𝑎3 𝑏3 0
0 0 0 1 𝑎4 𝑏4

0 0 0 0 𝑑 𝑒

  
|

|
⋅

|

|
  

𝑇0

𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

  
|

|
=

|

|
 

𝑐0

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

 
|

|

   

(23) 

A solution of the equation system roots can be found for ex-
ample by means of an inverse matrix method: 

|𝑇| = |𝑎|−1 ⋅ |𝑐|
   

(24) 

A calculation example is realised on the planar rib with 

the length 50 mm, the thickness 2 mm, the width 100 mm 

and the thermal conductivity 𝜆 =  55 W ∙ m−1 ∙ K−1.  
The coefficient of heat transfer of the rib surface 

is  𝛼 =  45 W ∙ m−2 ∙ K−1, the temperature of surrounding 

liquid is 𝑇0 =  20 °𝐶 and the rib partition is Δ𝑥 =  0.01 m. 
The solution result of temperature field is a matrix in the form: 

|𝑇| =
|

|
  

50.00
43.65
39.28
36.52
35.13
35.01

  
|

|

  

(°C)   (25) 
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In Fig. 4 there is illustrated a comparison of resulting tempera-
ture in the nodal points of rib determined by FDM and an analytic 
solution. 

The temperature behaviours along the rib length have got 
an equal character; however, the low level of rib discretisation by 

means of large distances ∆𝑥 causes a relevant failure of the 
calculation using FDM in comparison to an analytic solution. 

 
Fig. 4. Behaviour of temperatures along the rib length determined  

 by analytic technique (analytical solution of the equation (6)  
 for planar rib) and by FDM 

Calculation deviation considering the actual situation of the rib 

is 5.84 %, whereas if one-dimensional network on the rib surface 
is more compacted, the calculation deviation decreases. 

3.1. Application of FDM for Calculation of Cylindrical Ribs 

It is more suitable to apply numerical methods for a solution 
of temperature fields as well as for a solution of the total thermal 
flow removed through the rib with regard to a complicity and slow-
ness of the analytical solution. Software support for a solution 
of the cooling power output can be created by a proper implemen-
tation of the mathematical methods. Such application is useful 
predominately in the case of coolers (Čarnogurská et al., 2013, 
Kapalo, 2005). 

The analytical solution is too complicated for a design of quick 
and easy calculation software. Therefore, it was chosen a calcula-
tion method, which is based on FDM application. In this case the 
cylindrical rib is divided along the height into the 𝑁 coaxial cylin-
drical elements. This solution was applied assuming that isother-
mal surfaces have got a cylindrical shape, although in the case 
of a real cooler the temperature field is deformed due to gradual 
air heating along the rib height as well as due to an unequal distri-
bution for the velocity field of cooling air (Fig. 5). 

The Fourier law in the differential form describes a conductive 
heat transfer through a rib and it can be transferred into a differ-
ence form according to the equation (27) for a very small change 
of the radius. 

At the numerical method there is used a substitution of the dif-
ferential equation of the first order by a difference equation (with 
an application of Taylor series neglecting the second and higher 
derivations) (Michalec et al., 2010, Nagy et al., 2012, Urban et al., 
2012). A requirement for solution by means of FDM is to keep the 

same division of the radius 𝑟 during task discretisation, i.e.: 

d𝑡

d𝑟
=

𝑇𝑖+1 − 𝑇𝑖

𝑟𝑖+1 − 𝑟𝑖

 (K · m−1)                           (26) 

Then: 

𝑃[𝑖] = −2 ⋅ π ⋅ 𝑟𝑖 ⋅ δ ⋅ λ ⋅
𝑇𝑖+1−𝑇𝑖

𝑟𝑖+1−𝑟𝑖
    (W)

 

(27) 

where: 𝑟  is the internal radius of the 𝑖-th element (m), 𝑟𝑖+1   is the 
external radius of the 𝑖-th element (m), 𝑇𝑖  is the temperature 

of the i-th element (𝐾), and 𝑇𝑖+1  is the temperature of the (𝑖 +
1)-th element (𝐾). 

 
Fig. 5. Temperature field on the rib during flowing of the cooling liquid  

  in 𝑦-axis direction 

The Newton law describes a heat transfer from a rib surface 
into the air: 

𝑃k[𝑖] = α ⋅ (𝑇𝑖 − 𝑇o) ⋅ π ⋅ (𝑟𝑖+1
2 − 𝑟𝑖

2)
  

(W)   (28) 

where 𝑇o is the cooling air temperature (𝐾). 
The relation (29) describes the conductive thermal flow 

entering the next [𝑖 + 1]-th element, whereas the calculation has 
to fulfil the basic boundary conditions: 

𝑃[𝑖 + 1] = 𝑃[𝑖] − 2 ⋅ 𝑃  k
 [𝑖]

 
(W)   (29) 

The 1st boundary condition:  𝑟[0] = 𝑟1  ⇒ 𝑡[0] = 𝑡p. The 

2nd boundary condition: 𝑃  k
 [𝑁] = 2 ⋅ α ⋅ π ⋅ 𝑟2 ⋅ δ ⋅ (𝑇𝑁 − 𝑇air) 

(convection at the rib end), where 𝑇𝑁 is a temperature of the 

boundary 𝑁-th element  (𝐾), 𝑇𝑎𝑖𝑟  – temperature of the surround-

ing fluid medium  (𝐾). 
It is necessary to estimate the thermal flow as accurately as 

possible for the first iteration at the rib foot in order to accelerate 
the iterative calculation.  

This requirement can be obtained by a calculation of the pla-
nar rib with the constant cross-section, whereas a rib cross-
section and a rib circumference is considered at the middle radius 
of the cylindrical rib: 

 1
 𝑃[0] = √α ⋅ λ ⋅ 𝑝avg ⋅ 𝐴avg ⋅ (𝑇o − 𝑇vz) ⋅

tanh [√
α

λ
⋅

𝑝avg

𝐴  avg
 . (𝑟2 − 𝑟1)]                  (W) 

(30) 

where: 𝑝avg is the perimeter of the planar rib corresponding to the 

mean radius of the cylindrical rib (m), 𝐴  avg
  is a cross-sectional 

area on the mean radius of the rib (m2). 
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Fig. 6. Thermal flows in the element of a cylindrical rib 

The calculation is performed iteratively; at the end of each 
individual iteration it is necessary to change an initial conductive 

thermal flow at the rib foot 𝑃  k
 [0] so that the boundary condition 

No. 2 will be reached. For this purpose there was suggested 
an iterative condition. During application of this condition it was 
investigated that its calculation is still converging to the required 
real value: 

 𝑗+1
 𝑃[0] =  𝑗

 𝑃[0] −
 𝑗
 𝑃[𝑁]

10
 

(W)   (31) 

where:  𝑗
 𝑃[0] – is the thermal conductive flow at the rib input 

for the 𝑗-th iteration (W),  𝑗+1
 𝑃[0] – is the thermal conductive 

flow at the rib input for the (𝑗 + 1)-th iteration, and  𝑗
 𝑃[𝑁] – is 

the thermal flow at the external rib radius for 𝑗-th iteration (W). 

 
Fig. 7.  Temperature field on a cylindrical rib of the natural gas cooler  

      CH_R (ANSYS CFX) 

The results of calculation obtained by means of the above-
mentioned method were compared using the simulation tool 
ANSYS CFX (Fig. 8) for the same boundary conditions: 

1. The rib foot temperature: 50 °C. 

2. The coefficient of heat transfer on the rib: 45 W ∙ m−2 ∙ K−1  

(at ambient air temperature 20 °C). 

 
Fig. 8. A comparison of the temperature behaviours along the rib height 

        obtained with various numerical tools 

The deviations of the temperature behaviours along the rib 

height are up to the maximum value 0.015 % (Fig. 8). These 
temperature behaviours can be obtained either by the numerical 
calculation, which is performed by the newly developed software 
NGC (Natural Gas Cooler) or by the commerce software ANSYS 
CFX. 

4. APPLICATION OF ANALYTICAL SOLUTION CONCERNING 
PLANAR RIBS FOR CURVED RIBS 

The analytical and numerical calculation of the planar 
and cylindrical ribs was realised providing one-dimensional sta-
tionary heat conducting. In practical applications there is heat 
conducted through extended surfaces with a constant cross-
section, whereas the centre of gravity for a surface, which conduc-
tive thermal flow is passing through, often creates a general 
curve. Therefore, it is not possible to consider the planar ribs. 
However, there is an advantageous possibility to apply mathemat-
ical functionalities deduced for the planar ribs. A typical example 
of a curved body is a handle of a fire stove specified for dendro-
mass combustion, (Fig. 9). Although this handle does not fulfil 
a rib function, the thermal flow, which is passing through it, can be 
solved by means of assumptions valid for the planar ribs. 

 
Fig. 9. The geometrical and thermal boundary conditions of the handle 

A suitability of the assumption for calculation of the curved ribs 
with the constant cross-section was verified by a comparison. This 
comparison was realized between the analytical calculation of the 
rib end temperature considering the total thermal flow and the 
second calculation, which was fulfilled using finite volume method 

38

40

42

44

46

48

50

0.0125 0.0145 0.0165 0.0185 0.0205 0.0225 0.0245 0.0265

r  (m)

T
em

p
er

a
tu

re
 (

°C
)

0.0000%

0.0020%

0.0040%

0.0060%

0.0080%

0.0100%

0.0120%

t - ANSYS CFX (°C)

t - NGC (°C)

Deviation (%)

D
ev

ia
ti

o
n

 (
%

)



Tomáš Brestovič, Natália Jasminská, Marián Lázár       DOI 10.1515/ama-2015-0013 
Application of Analytical Solution for Extended Surfaces on Curved and Squared Ribs 

80 

(FVM) in ANSYS CFX.  

The rib foot temperature is 100°C, the ambient air tempera-

ture is 25°C and the end of the handle is adiabatically insulated.  
A gravity point axis of the cross-section surface is situated 

horizontally. The heat transfer coefficient 𝛼 =  8.844 W ∙ m−2 ∙
K−1 is determined by means of the criterion equations that are 
valid for heat transfer during free convection and by the known 
geometrical and physical characteristics of the handle and ambi-
ent air.  

The HTC (Heat Transfer Coefficient) software was developed 
in order to quicken a calculation of the heat transfer coefficient. 

There is considered the rib thermal conductivity value of 60.5 W ∙
m−1 ∙ K−1 and the surface emissivity value 𝜀 ≈ 0 (this assump-
tion is correct for a chromium-plated surface). 

After the solution and modification of the equation (6) we ob-
tain a calculating relation of the handle end temperature in the 
form: 

𝑇𝐿 = 𝑇o + (𝑇p − 𝑇𝑜) ⋅
1

cosh(𝑚⋅𝐿)
 

(°C)   (32) 

where 𝑚 is the substitution of constants resulting from the analyt-
ical solution of the differential equation for the extended area 

√
α

λ
⋅

𝑝

𝐴
  (m−1),  𝐿 - length of the rib (𝑚). 

The analytical calculation, performed according to the relation 

(32), determines the temperature value 𝑇 
𝐿

=  71.026 °C. After 

a solution of the equation (6) with applying the Fourier’s law, there 
is the value level of thermal flow, which is removed through the 

handle, 𝑃𝑟  =  3.953 W. As well using ANSYS CFX a calculation 
was performed in order to compare the obtained results.  

The calculated rib end temperature was 𝑇𝐿−𝐴𝑁𝑆𝑌𝑆 = 

71.148 °C and the total thermal flow was 𝑃𝑟−𝐴𝑁𝑆𝑌𝑆 = 

3.956 W. The percentage deviation between the analytical calcu-

lation and FVM is ∆𝑇 =  0.17% for the temperature values and 

the percentage deviation for the thermal flow is ∆𝑃 =  0.076 %. 
It is evident, with regard to the above-mentioned deviations, that 
the applied assumptions are correct for an analytical calculation 
of the planar ribs. In Fig. 10 there are illustrated the isothermal 
surfaces of the handle cross-section calculated in ANSYS CFX.  

 
Fig. 10.  Thermal field in the plane passing through a middle of handgrip 

handle 

The calculation demonstrates a fact that the isothermal sur-
faces are not curved in the location of the bar deflection. This fact 
is favourable for an assumption of an analytical calculation of heat 
transfer because an increase of convective thermal flow on the 
external radius is compensated by a reduction of the thermal flow 
on the internal surface of the handle curvature. 

An evaluation of a curvature impact on accuracy of the analyt-

ical calculation for a thermal flow passing through a planar rib was 
realised also for another type of geometry by means of the simula-
tion tool ANSYS CFX. Another geometry consisted from one 
thread of a helix with such curvature radius, which equals to the 

pitch 𝑅 = ℎ = 50 mm. After a planar rollout of the helix a right 

triangle is created with the side value 2 ∙ 𝜋 ∙ 𝑅 and the pitch ℎ.  
The hypotenuse of this triangle represents a length 𝐿 of a spa-

tial curve, which passes through the middle of a helix profile. 

𝐿 = √(2 ⋅ π ⋅ 𝑅)2 + ℎ2

  
(m)   (33) 

The equivalent thermal flow of the planar rib, which is made 
from aluminium, will be solved according to the equation (6) for 
this geometry with the length 𝐿 and for the adiabatic rib end. The 

value of rib heat conductivity is considered 𝜆 =  237 W ∙ m−1 ∙

K−1 and the heat transfer coefficient value is 𝛼 =  50 W ∙
m−2 ∙ K−1 at the ambient temperature 20°C. The defined rib foot 
boundary condition of the first type is 𝑡𝑝  =  50 °C.  

The cross-sectional area of a profile is a cyclic one with the 

diameter 𝑑. A change of this diameter causes a change of the 
ratio 𝑅/𝑑 as well. The calculation was performed for the ratio 

values 𝑅/𝑑 =  20 (Fig. 11), 𝑅/𝑑 =  10 (Fig. 12), 𝑅/𝑑 =  5  

(Fig. 13), 𝑅/𝑑 =  3 (Fig. 14), 𝑅/𝑑 =  1.5 (Fig. 15) and 
𝑅/𝑑 =  1 (Fig. 16).  

 
Fig. 11. Surface temperature field of curved bar  

with the ratio 𝑅/𝑑 =  20 

 

Fig. 12. Surface temperature field of curved bar  
with the ratio 𝑅/𝑑 =  10 
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Fig. 13. Surface temperature field of curved bar with the ratio 𝑅/𝑑 =  5 

 
Fig. 14. Surface temperature field of curved bar with the ratio 𝑅/𝑑 =  3 

 
Fig. 15. Surface temperature field of curved bar  
             with the ratio 𝑅/𝑑 =  1.5 

 
Fig. 16. Surface temperature field of curved bar with the ratio 𝑅/𝑑 =  1 

Tab.1 presents a comparison of the total thermal flow values 

𝑃𝑟  obtained by means of the analytical calculation and the values 
𝑃𝑟−𝐴𝑁𝑆𝑌𝑆 , which are resulting from the calculation using the 
software ANSYS CFX. In this table there are also recorded the 
calculating deviations corresponding to the both methods. 

Tab. 1. Comparison between the analytical calculation  
  and the calculation using FVM 

𝑹/𝒅 
(−) 

𝑷𝒓 
(𝐖) 

𝑷𝒓−𝑨𝑵𝑺𝒀𝑺  

(𝐖) 
Calculating Deviation 

(%) 

20 0.641 0.634 1.147 

10 1.813 1.790 1.269 

5 5.100 5.057 0.847 

3 10.801 10.707 0.865 

1.5 28.776 28.797 -0.070 

1 49.523 50.025 -1.012 

A deviation of the both calculation methods does not over-

reach the value of 1.269 %. So it can be concluded that the 
above-mentioned method, which substitutes a curved rib calcula-
tion by a calculation of planar rib, is a suitable procedure. 
An inaccuracy of the calculation can be also caused due to the 
object discretisation by means of FVM. 

5. CALCULATION OF POWER OUTPUT FOR FLAT 
SQUARED RIBS 

A heat conduction of flat squared ribs is a two-dimensional 
process and, as a result, the isothermal surfaces are “deformed” 
predominately on the external rib side. (Fig.18). Comparison 
of the temperature fields, for a cylindrical rib and a squared rib, 
demonstrates a fact that the temperature field is similar in such 
area where the temperature difference between a surface and 
surrounding is maximal (on an internal diameter).  

The squared rib temperature field is deforming with an in-
creasing distance of a rib element from the central axis. In these 
areas the surface temperature is lower. An influence of thermal 
isotherm deformations (curvature) on the total thermal flow, which 
is determined by an analytical solution of cylindrical ribs, is ne-
glecting in the case of a procedure applied for the squared ribs.  

This consideration is verified by a numerical calculation 
of squared ribs using ANSYS CFX and by a calculation of cylindri-
cal ribs using the own software (FDM). The numerical calculation 
of cylindrical ribs was also performed in ANSYS CFX in order 
to compare the temperature fields. 

A substitution of squared ribs by cylindrical ribs is possible on-
ly on a condition that the frontal surface is the same.  

As well as the internal diameter 𝑑 is identical in both cases. 
The relation between the square side length and an external 
diameter of cylindrical rib is given: 

𝑎 = √π ⋅
𝐷

2
 

(m)           (34) 

where  𝑎  is a square side length (m), 𝑑  is an internal diameter 
of rib (m), and 𝐷  is an external diameter of the cylindrical rib  

(m). 

Various ratio values of diameters 𝐷/𝑑 were investigated 
in order to evaluate a suitability of the above-mentioned assump-

tions. The ratios 𝐷/𝑑 are corresponding with an adequate ratio 

value 𝑎/𝑑 according to the relation (34). A simulation calculation 
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of a temperature field for a cylindrical rib with the ratio 𝐷/𝑑 =  2 
is illustrated in the Fig. 17.  

 
Fig. 17. Temperature field of a cylindrical rib with the ratio  
             of diameters 𝐷/𝑑 =  2 

 

Fig. 18. Temperature field of a squared rib corresponding  
              to the ratio 𝐷/𝑑 =  2 

 
Fig. 19. Temperature field of a cylindrical rib with the ratio  
              of diameters 𝐷/𝑑 =  4 

 

Fig. 20.  Temperature field of a squared rib corresponding  
               to the ratio 𝐷/𝑑 =  4 

 
Fig. 21. Temperature field of a cylindrical rib  
              with the ratio of diameters 𝐷/𝑑 =  6 

 
Fig. 22. Temperature field of a squared rib corresponding  
              to the ratio 𝐷/𝑑 =  6 
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There is the corresponding ratio 𝑎/𝑑 =  1.772 for the 
squared rib (Fig. 18). The next figures from the Fig. 19 to the Fig. 

22 illustrate the temperature contours for the ratios 𝐷/𝑑 =  4 

and 𝐷/𝑑 =  6. 

The value of rib heat conductivity is considered     𝜆 =  237  
W ∙ m−1 ∙ K−1 and the heat transfer coefficient value is   

𝛼 =  35  W ∙ m−2 ∙ K−1 at the ambient temperature 20 °C. The 

defined rib foot boundary condition of the first type is 𝑡𝑝  =

 50 °C. In the Tab. 2 there is presented comparison of the total 
thermal flow removed through a cooling cylindrical rib and 
a squared rib. The cylindrical rib was calculated using the own 
developed software, which applies the finite difference method 
FDM.  

Tab. 2. The comparison of an analytical calculation  
  with a ANSYS CFX calculation 

𝑫/𝒅 
(−) 

Squared rib 
𝑷𝒓 (𝐖) 

Cylindrical rib 
𝑷𝒓 (𝐖) 

Calculating deviation 
(%) 

2 1.922 1.926 -0.179 

4 7.345 7.373 -0.388 

6 10.972 11.017 -0.411 

An application suitability of an analytical calculation for ther-
mal flow, which is removed through a cylindrical rib, for a calcula-
tion of a flat squared rib was verified on the basis of relatively 
small calculating deviations of power output values in comparison 
to the simulations performed in ANSYS CFX.  

A gradual rising of deviation absolute values in a calculation 
process is caused due to a substitution of a cylindrical rib by 
a squared rib. Both ribs have got the same frontal surface area. 
This fact causes a rising of distance between the rib axis and the 
square edge in comparison to the width of a cylindrical rib. How-
ever, the rising distance also causes a decrease of surface tem-
perature and in this way the total thermal flow is reduced, which 
is transferred by convection into environment. 

6. CONCLUSIONS 

This article is focused on the methodology, which is specified 
for a design of planar and cylindrical ribs using analytical and 
a numerical method. Application of an analytical calculation 
is possible predominately in the case of simpler geometrical 
shapes and also for simpler accepted boundary conditions. 

Numerical methods are suitable especially for more compli-
cated geometrical shapes and for a creation of a functional de-
pendence among the relevant values and temperatures. In such 
situations there are applied more difficult differential equations 
that are used for a solution of heat transfer through ribs.  

The mostly used method for a solution of the above-
mentioned problems is the method of finite differences. This 
method is a base for the newly developed software tools specified 
for a calculation of the ribbed surfaces. 

In this article there were also described procedures that ena-
ble to re-transform the multi-dimensional tasks of the heat transfer 
through ribs into the one-dimensional tasks. 

The main objective for investigation of a transformation possi-
bility of the multi-dimensional tasks into the one-dimensional task 
is to find simpler tools. Those tools would provide results that are 
comparable with the results obtained by using various commercial 
tools, which may not be available for every user. 
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