PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Na3VO4 Inhibitor on the Corrosion Resistance of Al2Cu Intermetallic Phase in H3PO4 Aqueous Solution

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sodium orthovanadate was tested as a corrosion inhibitor of intermetallic Al2Cu in 1 M H3PO4. The Al2Cu–H3PO4–Na3VO4system was studied using the following methods: inductively coupled plasma optical emission spectrometry, scanning electron microscopy with energy dispersive x-ray spectroscopy, x-ray diffraction, electrochemical impedance spectroscopy, polarisation and open circuit potential. It was found that the corrosion rate decreased as the inhibitor concentration increased. The highest inhibition efficiency 99% was obtained when sodium orthovanadate initial concentration was equal to 100 mM, pH = 1.11, due to precipitation of a protective layer of insoluble salt, containing vanadium, phosphorus, sodium and oxygen, on the surface. At pH = 0.76 the protective layer was not formed and inhibition efficiency decreased to 76%. Selective corrosion of the intermetallic phase caused a significant increase of an electric double layer capacitance and decrease of a charge transfer resistance.
Twórcy
autor
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, 2 Wincentego Pola Str., 35-959 Rzeszów, Poland
Bibliografia
  • [1] N. A. Belov, D. G. Eskin, A. A. Aksenov, Multicomponent phase diagrams: applications for commercial aluminum alloys, Elsevier, Oxford (2005).
  • [2] J. R. Scully, T. O. Knight, R. G. Buchheit, D. E. Peebles, Electrochemical characteristics of the Al2Cu, Al3Ta and Al3Zr intermetallic phases and their relevancy to the localized corrosion of Al alloys, Corros Sci. 35, 185-195 (1993).
  • [3] R. G. Buchheit, A compilation of corrosion potentials reported for intermetallic phases in aluminum alloys, J Electrochem Soc. 142, 3994-3996 (1995).
  • [4] ASTM B137-95, Standard Test Method for Measurement of Coating Mass Per Unit Area on Anodically Coated Aluminum, (2009).
  • [5] M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin (1983).
  • [6] P. Kwolek, A. Kamiński, K. Dychtoń, M. Drajewicz, J. Sieniawski, The corrosion rate of aluminium in the orthophosphoric acid solutions in the presence of sodium molybdate, Corros Sci. 106, 208-216 (2016).
  • [7] X. Li, S. Deng, H. Fu, Sodium molybdate as a corrosion inhibitor for aluminium in H3PO4 solution, Corros Sci. 53, 2748-2753 (2011).
  • [8] K. Dychtoń, P. Kwolek, The replacement of chromate by molybdate in phosphoric acid-based etch solutions for aluminium alloys, Corros Eng Sci Technol. 53, 234-240 (2018).
  • [9] P. Kwolek, M. Wojnicki, Spectrophotometric study of corrosion inhibition of aluminium in orthophosphoric acid aqueous solutions by using sodium molybdate, Corros Eng Sci Technol. 54, 199-204 (2018).
  • [10] P. Kwolek, A. Pustuła, W. J. Nowak, Influence of molybdophosphoric acid on the kinetics of the anodic coating dissolution, Surf Coatings Technol. 357, 535-542 (2019).
  • [11] M. Iannuzzi, G. S. Frankel, Mechanisms of corrosion inhibition of AA2024-T3 by vanadates, Corros Sci. 49, 2371-2391 (2007).
  • [12] K. D. Ralston, S. Chrisanti, T. L. Young, R. G. Buchheit, Corrosion Inhibition of Aluminum Alloy 2024-T3 by Aqueous Vanadium Species, J Electrochem Soc. 155, C350-C359 (2008).
  • [13] K. D. Ralston, T. L. Young, R. G. Buchheit, Electrochemical Evaluation of Constituent Intermetallics in Aluminum Alloy 2024-T3 Exposed to Aqueous Vanadate Inhibitors, J Electrochem Soc. 156, C135-C146 (2009).
  • [14] K. D. Ralston, R. G. Buchheit, An Initial Exploration of Corrosion Inhibition of AA6061 and AA7075 by Aqueous Vanadates, ECS Electrochem Lett. 2, C35-C38 (2013).
  • [15] D. S. Kharitonov, J. Sommertune, C. Örnek, J. Ryl, I. I. Kurilo, P. M. Claesson, J. Pan, Corrosion Inhibition of Aluminium Alloy AA6063-T5 by Vanadates: Local Surface Chemical Events Elucidated by Confocal Raman Micro-Spectroscopy, Corros Sci. 148, 237-250 (2018).
  • [16] B. Boukamp, A linear Kronig-Kramers transform test for immittance data validation, J Electrochem Soc. 142, 1885-1894 (1995).
  • [17] B. Boukamp, Electrochemical impedance spectroscopy in solid state ionics: recent advances, Solid State Ionics. 169, 65-73 (2004).
  • [18] N. Birbilis, R. G. Buchheit, Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH, J Electrochem Soc. 155, C117-C126 (2008).
  • [19] C. G. Zoski, Handbook of Electrochemistry, Elsevier, Amsterdam (2007).
  • [20] I. Frateur, C. Deslouis, M. E. Orazem, B. Tribollet, Modeling of the cast iron / drinking water system by electrochemical impedance spectroscopy, Electrochim Acta. 44, 4345-4356 (1999).
  • [21] A.-T. Tran, F. Huet, K. Ngo, P. Rousseau, Artefacts in electrochemical impedance measurement in electrolytic solutions due to the reference electrode, Electrochim Acta. 56, 8034-8039 (2011).
  • [22] B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim Acta. 55, 6218-6227 (2010).
  • [23] B. Łosiewicz, R. Jurczakowski, A. Lasia, Kinetics of hydrogen underpotential deposition at iridium in sulfuric and perchloric acids, Electrochim Acta. 225, 160-167 (2017).
  • [24] C. Cao, On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady state II. Two state variables besides electrode potential, Electrochim Acta. 35, 837-844 (1990).
  • [25] I. Epelboin, C. Gabrielli, M. Keddam, H. Takenouti, The Study of the Passivation Process by the Electrode Impedance Analysis, in: J. Bockris, B. E. Conway, E. Yeager, R. E. White (Eds.), Electrochem Mater Sci Compr Treatise Electrochem, Springer, Boston MA (1981).
Uwagi
EN
1. The financial support from the National Science Centre, Poland, Grant No. 2016/23/D/ST5/01343 is gratefully acknowledged. The authors also gratefully acknowledge Dr. Dariusz Szeliga and Mr. Andrzej Gradzik for preparing the Al2Cu intermetallic phase, Dr. Barbara Kościelniak for her help in microscopic analysis, and Mr. Kamil Dychtoń for his help in conducting the electrochemical research.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69de07cf-0102-45af-8a73-0e5ddde579a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.