Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the oxidation of natural limonene (extracted from waste orange peels) by 60 wt% hydrogen peroxide, in the presence of Ti-MCM-41 catalyst and in methanol as the solvent. The aim of the research was to develop the most favorable technological parameters for the process of limonene oxidation (temperature, molar ratio of limonene to hydrogen peroxide, methanol concentration, Ti-MCM-41 catalyst content and reaction time) by analyzing changes in the main functions describing this process: the conversion of limonene, selectivities of appropriate products, the conversion of hydrogen peroxide and the effective conversion of hydrogen peroxide. The process is environmentally friendly process and it uses renewable raw material - limonene and a safe oxidant -hydrogen peroxide. During the study, very valuable oxygenated derivatives of limonene were obtained: 1,2-epoxylimonene, its diol, carvone, carveol, and perillyl alcohol. These compounds are used in medicine, cosmetics, perfumery, food and polymers industries.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--6
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pulaskiego 10, 70-322 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pulaskiego 10, 70-322 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pulaskiego 10, 70-322 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pulaskiego 10, 70-322 Szczecin, Poland
Bibliografia
- 1. Ciriminna, R., Lomeli-Rodrigues, M., Demma Cara, P., Lopez-Sanchez, J.A. & Pagliaro, M. (2014). Limonene: a versatile chemical of the bioeconomy, Chem. Comm. 50, 15273–15466. DOI: 10.1039/C4CC06147K.
- 2. Monteiro, J.L.F. & Veloso, C.O. (2004). Catalytic conversion of terpenes into fi ne chemicals. Top. Catal. 27, 169–180. DOI: 10.1023/B:TOCA.0000013551.99872.8d.
- 3. Firdaus, M. & Meier, M.A.R. (2013). Renewable polyamides and polyurethanes derived from limonene. Green Chem. 15, 269–536. DOI: 10.1039/C2GC36557J.
- 4. Santa, A.M.A., Vergara, J.C.G., Palacio, L.A.S. & Echavarria, A.I. (2008). Limonene epoxidation by molecular sieves zincophosphates and zincochromates. Catal. Today 133, 80–86. DOI: 10.1016/j.cattod.2007.12.025.
- 5. Caovilla, M., Caovilla, A., Pergher, S.B.C, Esmelindro, M.C., Fernandes, Ch., Dariva, C., Bernardo-Gusmao, K., Oestreicher, E.G. & Antunes, O.A.C. (2008). Catalytic oxidation of limonene, a-pinene and b-pinene by the complex [FeIII(BPMP) Cl(m-O)FeIIICl3] biomimetic to MMO enzyme. Catal. Today 133, 695–698. DOI: 10.1016/j.cattod.2007.12.107.
- 6. Corma, A., Iborra, S. & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502. DOI: 10.1021/cr050989d.
- 7. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules 19, 19907–19922. DOI: 10.3390/molecules191219907.
- 8. Wilborn, P.A., Chu, F. & Tang, Ch. (2013). Progress in renewable polymers from natural terpenes, terpenoids and rosin. Macromol. Rapid Comm. 34, 8–37. DOI: 10.1002/marc.201200513.
- 9. Kallrath, G. & Biegler, H. (1968). U.S. Patent No.3383172. Washington, D.C.: U.S. Patent and Trademark Office.
- 10. Ballmoos, R., Chu, C., Landis, M. & Derouane, E.(1989). U.S. Patent No. 4880611 A. Washington, D.C.: U.S. Patent and Trademark Office.
- 11. Garcia-Martinez, J. & Li, K. (2015). Mesoporous zeolites: preparation, characterization and applications, Wiley-VCH, Verlag GmbH & Co., Weinheim, Germany, 19–26.
- 12. Iuliean, V., Bilba, A.N., Birsa, L.M. & Luchian, C. (2008). Sorption properties of MCM-41 mesoporous materials. Acta Chem. Iasi 16, 47–60.
- 13. Rogerio, A.A. Melo, Marcus, V. Giotto, João, Rochab, Ernesto & A. Urquieta-González (1999). MCM-41 ordered mesoporous molecular sieves synthesis and characterization. Mat. Res. 2, 173–179. DOI: 10.1590/S1516-14391999000300010.
- 14. Grun, M., Unger, K.K., Matsumoto, A., Tsutsumi, K. (1999). Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor. Mesopor. Mat. 27, 207–216. DOI: 10.1016/S1387-1811(98)00255-8.
- 15. Wróblewska, A. & Makuch, E. (2013). Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation. Pol. J. Chem. Technol. 15, 111–115. DOI: 10.2478/pjct-2013-0078.
- 16. Brill, W.F. (1963). The origin of epoxides in the liquid phase oxidation of olefi ns with molecular oxygen. J. Am. Chem. Soc. 85, 141–143.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69d5ec17-0f9a-4384-8956-f1360da633e8