PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of Tool Steel with Cr/CrN Type Hybrid Coatings, Obtained by PVD Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the results of investigations of material, tribological and anti-corrosion properties of hybrid coatings of the Cr/CrN type, consisting of chromium and chromium nitride, formed on the surface of alloy tool steel by the Arc-PVD method. Investigations of the morphology and microstructure of hybrid coatings, as well as of their phase composition were carried out. The studies on mechanical properties included tests on hardness and Young’s modulus using the nanoindentation method. Tests on adhesion were conducted using the scratch-test method. Tribological properties of the obtained coatings were evaluated by the pin-on-disc method. Resistance to corrosion was determined by electrochemical methods. It was shown that hybrid coatings of the Cr/CrN type are characterized by good adhesion to the substrate and very good tribological properties, as well as by very good resistance to corrosion in a solution containing chlorine ions.
Słowa kluczowe
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, 17 Łukasiewicza Str., 09-400 Płock, Poland
Bibliografia
  • [1] T. Burakowski, T. Wierzchoń, Surface Engineering of Metals, Principles, Equipment, Technologies, CRC Press Boca Raton, London, New York, Washington D. C. (1999).
  • [2] J. P. Celis, D. Drees, M. Z. Huq, P. Q. Wu, M. De Bonte, Hybrid processes - a versalite technique to much processes requirements and coatings leeds, Surface and Coatings Technology 113, 165-181 (1999).
  • [3] A. Mazurkiewicz, J. Smolik, The innovative direction of hybrid technologies development and implementations in surface engineering area, Archives of Metallurgy and Materials 57 (3), 657-664 (2012).
  • [4] J. Smolik, Hybrid technologies in surface engineering, Institute for Sustainable Technologies - National Research Institute (ITeE-PIB) Editors, Radom (2016).
  • [5] A. J. Michalski, Physicochemical basis for obtaining gas phase coatings, PWN, Warsaw (2000).
  • [6] J. Walkowicz, Physicochemical structure of plasma and chemical and phase composition of layers produced by plasma surface engineering techniques, Institute for Sustainable Technologies - National Research Institute (ITeE-PIB) Editors, Radom (2003).
  • [7] K. Zdunek, Plasma pulse in surface engineering, Warsaw University of Technology Publishing House, Warsaw (2004).
  • [8] W. Wołczyński, Large Steel Ingots: Microstructure Mathematical Modeling, in: Rafael Colás and George Totten (Eds.), Encyclopedia of Iron, Steel and Their Alloys, Five-Volume Set, Taylor & Francis Group, New York Inc. (2016)
  • [9] W. Wołczyński, Back-diffusion in crystal growth. Eutectics, Archives of Metallurgy and Materials 60, 2403-2407 (2015).
  • [10] E. Kasprzycka, Corrosion resistant layers produced from metals vapour (Cr, Ti) under low pressure, Institute of Precision Mechanics Eds., Warsaw (2002).
  • [11] J. Vetter, Vacuum arc coatings for tools: potential and application, Surface and Coatings Technology 739, 86-87 (1996).
  • [12] A. Mazurkiewicz, J. Smolik, Advanced surface engineering technologies supporting exploitation and production processes, Institute for Sustainable Technologies - National Research Institute (ITeE-PIB) Editors, Radom (2015).
  • [13] K. Miernik, Spatial distribution of microdroplets generated in the cathode spots of vacuum arcs, Surface and Coatings Technology 125, 161-166 (2000).
  • [14] E. Byon, A. Anders, Bias and Self-Bias of Magnetic Macroparticle Filters for Cathodic Arc Plasmas, Journal of Applied Physics 93, 8890-8897 (2003).
  • [15] P. J. Martin, A. Bendavid, Review of the filtered vacuum arc process and materials deposition, Thin Solid Films 394, 1-10 (2001).
  • [16] K. Miernik, J. Walkowicz, J. Bujak, Design and performance of the microdroplet filtering system used in cathodic arc coating deposition, Plasmas and Ions 3, 41-51 (2000).
  • [17] B. G. Wendler, Functional coatings by PVD or CVD methods, Institute for Sustainable Technologies - National Research Institute (ITeE - PIB) Editors, Radom (2011).
  • [18] J. Smolik, A. Mazurkiewicz, The development of surface hybrid technologies as a result of practical industrial applications, Maintenance Problems 3, 105-114 (2010).
  • [19] J. Smolik, Hybrid surface treatment technology for increase of hot dies, Archives of Metallurgy and Materials 57, 657-664 (2012).
  • [20] J. Smolik, The role of hybrid layers consisting of nitrided layer/PVD coating in the process of enhancing the service life of forging dies, Institute for Sustainable Technologies - National Research Institute (ITeE-PIB) Editors, Radom (2007).
  • [21] J. Kacprzyńska-Gołacka, Z. Słomka, P. Czajka, K. Czarnecki, B. Bogdański, M. Rydzewski, A. Mazurkiewicz, J. Smolik, An analysis of the wetting angle of liquid glass on multicomponent coatings obtained by means PVD methods, Maintenance Problems 4, 31-41 (2016).
  • [22] J. Kacprzyńska-Gołacka, Z. Słomka, P. Czajka, K. Czarnecki, B. Bogdański, M. Rydzewski, A. Mazurkiewicz, J. Smolik, Analysis of the tribological resistance of coatings dedicated to improving the durability of tools used in the glass forming process, Maintenance Problems 4, 43-52 (2016).
  • [23] Bogdański, A. Więczkowski, E. Kasprzycka, K. Kołodziejska, The use of diffusion chromizing for increasing durability of tools exposed to tribological wear, in: P. Grabowski, A. Krawczyńska-Piechna, J. Wernik, Eds. Technical problems, Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Płock (2017).
  • [24] P. Panjan, M. Čekada, R. Kirn, M. Sokovič, Improvement of die casting tools with duplex treatment, Surface and Coatings Technology 180-181, 561-568 (2004).
  • [25] J. Kacprzyńska-Gołacka, A. Mazurkiewicz, J. Smolik, Analysis of resistance to cracking of multicomponent coatings based on chromium nitride, Material Engineering 3, 1-3 (2014).
  • [26] Y. L. Su, S. H. Yao, C. T. Wu, Comparison of characterizations and tribological performance of TiN and CrN deposited by cathodic arc plasma deposition process, Wear 199, 132-141 (1996).
  • [27] L. Shan, Y-R. Zhang, Y-X. Wang, J-L. Li, X. Jiang, J-M. Chen, Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater, Transactions of Nonferrous Metals Society of China 26, 175-184 (2016).
  • [28] R. Bayon, R. Nevshupa, C. Zubizarreta, U. Ruiz de Gopegui, J. Barriga, A. Igartua, Characterisation of tribocorrosion behavior of multilayer PVD coatings, Analytical and Bioanalytical Chemistry 396, 2855-2862 (2010).
  • [29] R. Bayon, A. Igartua, X. Fernandez, R. Martinez, R. J. Rodriguez, J. A. Garcia, A. de Frutos, M.A. Arenas, J. de Damborenea, Corrosion-wear behaviour of PVD Cr/CrN multilayer coatings for gear applications, Tribology International 42, 591-599 (2009).
  • [30] G.-H. Song, X.-P. Yang, G.-L. Xiong, Z. Lou, L.-Jia. Chen, The corrosive behavior of Cr/CrN multilayer coatings with different modulation periods, Vacuum 89, 136-141 (2013).
  • [31] J. Sekler, P. A. Steinmann, H. E. Hinterman, The scratch test different critical load determination techniques, Surface and Coatings Technology 36, 519-529 (1988).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69d2e31f-03b3-4a41-b2b5-c3f57645145b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.