PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual prototyping of the suspended monorail in the aspect of increasing the permissible travel speed in hard coal mines

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wirtualne prototypowanie kolejki podwieszonej w aspekcie zwiększenia jej dopuszczalnej prędkości jazdy w kopalniach węgla kamiennego
Języki publikacji
EN PL
Abstrakty
EN
Due to the longer distance of moving the crew to the workplace in hard coal mines, the possibility of increasing the maximum permissible speed of suspended monorails was considered. To ensure an adequate level of safety, decelerations affecting the crew in the case of emergency braking in various travelling conditions were analysed. The computational model was verified based on the results of the bench tests on a dedicated test track. The article presents a comparison of results of numerical calculations with measurements at the test stand, and results of numerical simulations in relation to the criterial states that could not be checked at the test stand as well as the analysis of overloads that affect the crew during the emergency braking. These overloads have a significant impact on safety of the operator and passengers, and their determination and analysis may be the basis for assessing the degree of safety as well as for the development of guidelines for designing the additional equipment for the operator's cabs and passenger cars, i.e. components increasing their safety.
PL
W związku z wydłużającym się czasem dojazdu załogi do miejsca pracy w kopalniach węgla kamiennego, rozważana jest możliwość zwiększenia maksymalnej dopuszczalnej prędkości jazdy kolejek podwieszonych. W celu zapewnienia odpowiedniego poziomu bezpieczeństwa, przeprowadzono analizy opóźnień oddziałujących na załogę w sytuacji awaryjnego hamowania w odniesieniu do różnych stanów kryterialnych. Model obliczeniowy został zweryfikowany w oparciu o wyniki badań stanowiskowych, przeprowadzonych na dedykowanym torze testowym. W artykule przedstawiono porównanie wyników obliczeń numerycznych oraz zmierzonych na stanowisku badawczym oraz wyniki symulacji numerycznych w odniesieniu do stanów kryterialnych, których nie można było sprawdzić na stanowisku badawczym, oraz przedstawiono analizę przeciążeń, jakie oddziałują na załogę w sytuacji awaryjnego hamowania. Wartości te mają duży wpływ na bezpieczeństwo operatora i pasażerów, a ich wyznaczenie i analiza może stanowić podstawę do oceny stopnia bezpieczeństwa oraz wytyczne do zaprojektowania dodatkowego wyposażenia kabin operatora i wozów pasażerskich, w postaci elementów zwiększających bezpieczeństwo ich użytkowania.
Rocznik
Strony
610--619
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Engineering Processes Automation and Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • KOMAG Institute of Mining Technology, Pszczyńska 37, 44-101 Gliwice, Poland
  • Department of Engineering Processes Automation and Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Becker F, Zell M. The state of the art in positively guided rail transport systems for underground mining. Mining Report 150 2014; (1/2):34 - 46, https://doi.org/10.1002/mire.201400002.
  • 2. Budniok T i in. Analiza możliwości zwiększenia prędkości jazdy ludzi kolejkami podwieszonymi z napędem własnym. XXII Międzynarodowa Konferencja Trwałość Elementów i Węzłów Konstrukcyjnych Maszyn Górniczych TEMAG 2014; 35-49.
  • 3. Gospodarczyk P, Kalukiewicz A, Stopka G. Symulacja niekontrolowanego ruchu górniczej kolejki podwieszonej po upadzie w sytuacji utraty sprzężenia z liną układu napędowego, Symulacja w Badaniach i Rozwoju 2010; 1(3): 233-244.
  • 4. Gutarevych V. Dynamic model of movement of mine suspended monorail, Transport Problems 2014; 9(1): 13-18.
  • 5. Horyl P, Šňupárek R, Maršálek P, Poruba Z, Pacześniowski K. Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports, Acta Montanistica Slovaca 2019; 24(3): 213-222.
  • 6. http://inesi.komag.eu/ (04.04.2020)
  • 7. INESI European Project: Increase Efficiency and Safety Improvement in Underground Mining Transportation Routes. RFCS, Contract No. 754169 (2017-2020).
  • 8. Jiang YZ, Zhong WS, Wu PB, Zeng J, Zhang YC, Wang S. Prediction of wheel wear of different types of articulated monorail based on co-simulation of MATLAB and UM software. Advances in Mechanical Engineering 2019; 11(6): 1687814019856841, https://doi.org/10.1177/1687814019856841.
  • 9. Pieczora E, Suffner H. Rozwój napędów dołowych kolejek podwieszonych. Maszyny Górnicze 2017; 3: 44-57.
  • 10. Pieczora E, Tokarczyk J. Development of mine underground transportation with use of suspended monorails, Mining-informatics, automation and electrical Engineering 2017; 4(532), https://doi.org/10.7494/miag.2017.4.532.96.
  • 11. PLM Siemens NX support, https://docs.plm.automation.siemens.com/tdoc/nx/12/nx_help (04.04.2020)
  • 12. Prochowski L, Żuchowski A. Analysis of the influence of passenger position in a car on a risk of injuries during a car accident. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16 (3): 360-366.
  • 13. Pytlik A. Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation, Studia Geotechnica et Mechanica 2019; 41(2): 81-92, https://doi.org/10.2478/sgem-2019-0009.
  • 14. Pytkik A, Rotkegel M, Szot Ł. Badanie wpływu prędkości kolejek podwieszonych na siły w wybranych elementach trasy, Przegląd górniczy 2016; 11: 30-37.
  • 15. Regulation of the Minister of Energy "on detailed requirements for conducting underground mining plant operations", November 23, 2016 (Journal of Laws of 2017, item 1118) (Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych (Dz. U. z 2017 r. poz. 1118)).
  • 16. Song ZA, Jiang F. Hydraulic system elaboration and simulation for single-drive light-load monorail locomotive in fully mechanized coal mining applications, IOP Conf. Series: Materials Science and Engineering 2019; 474, https://doi.org/10.1088/1757-899X/474/1/012006.
  • 17. Spiryagin M, Persson I, Wu Q, Bosomworth C, Wolfs P, Cole C. A co-simulation approach for heavy haul long distance locomotive-track simulation studies. Vehicle System Dynamics 2019; 57 (9): 1363-1380, https://doi.org/10.1080/00423114.2018.1504088.
  • 18. Szewerda K. Supporting development of suspended underground monorails using virtual prototyping techniques. IOP Conf. Series: Materials Science and Engineering 2019; 545: 012018, https://doi.org/10.1088/1757-899X/545/1/012018.
  • 19. Świder J, Herbuś K, Szewerda K. Control of selected operational parameters of the scraper conveyor to improve its working conditions, Advances in Intelligent Systems and Computing 2019; 934, https://doi.org/10.1007/978-3-030-15857-6_39.
  • 20. Tokarczyk J. Metodyka identyfikacji wybranych zagrożeń mechanicznych w pomocniczym transporcie podziemnych zakładów górniczych. Wydawnictwo Instytutu Techniki Górniczej KOMAG, 2017.
  • 21. Tokarczyk J. Method for identification of results of dynamic overloads in assessment of safety use of the mine auxiliary transportation system. Arch. Min. Sci. 2016; 61(4): 765-777, https://doi.org/10.1515/amsc-2016-0052.
  • 22. Tokarczyk J. Method for virtual prototyping of cabins of mining machines operators. Arch. Min. Sci. 2016; 60(1): 329-340, https://doi.org/10.1515/amsc-2015-0022.
  • 23. Verstraete ML, Roccia BA, Mook DT, Preidikman S. A co-simulation methodology to simulate the nonlinear aeroelastic behavior of a folding-wing concept in different flight configurations. Nonlinear Dynamics 2019; 98(2): 907-927, https://doi.org/10.1007/s11071-019-05234-9.
  • 24. Webber-Youngman RCW, van Heerden GMJ. Engineering principles for the design of a personnel transportation system, The Journal of the Southern African Institute of Mining and Metalurgy 2016; 116: 441 - 454, https://doi.org/10.17159/2411-9717/2016/v116n5a10.
  • 25. Wicher J, Więckowski D. Influence of vibrations of the child seat on the comfort of child's ride in a car. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2010; 4 (48): 102-110.
  • 26. Wojtyra M, Frączek J. Metoda układów wieloczłonowych w dynamice mechanizmów. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2007.
  • 27. Yýlmaz AI, Büyükyýldýz G, Ekici A, Çalýk M, Önder Ö, Aksoy CO. Staff transportation two way on the belt conveyor, Acta Montanistica Slovaca 2013; 18: 141-150.
  • 28. Zasadni W i in. Możliwości zwiększenia prędkości jazdy kolejkami podwieszonymi z napędem własnym. Konferencja: Problemy Bezpieczeństwa i Ochrony Zdrowia w Polskim Górnictwie 2015; 1-10.
  • 29. Żuchowski A. Analysis of the influence of the impact speed on the risk of injury of the driver and front passenger of a passenger car. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (3): 436-444, https://doi.org/10.17531/ein.2016.3.16.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69cea26a-dd52-465f-9d80-bc3686c15235
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.