Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A graph G is said to have a totally magic cordial (TMC) labeling with constant C if there exists a mapping ƒ : V (G) ∪ E(G) → {0, 1} such that ƒ(a)+ ƒ (b)+ ƒ(ab) ≡ C(mod 2) for all ab ∈ E(G) and [formula], where nƒ(i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we establish the totally magic cordial labeling of one-point union of n-copies of cycles, complete graphs and wheels.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
115--122
Opis fizyczny
Bibliogr. 6 poz., tab.
Twórcy
autor
- Research Center Department of Mathematics Govindammal Aditanar College for Women Tiruchendur – 628 215, India
autor
- Department of Mathematics Sri Meenakshi Government Arts College for Women (Autonomous) Madurai – 625 002, India
Bibliografia
- [1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201–207.
- [2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory 22 (2002), 247–258.
- [3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [4] P. Jeyanthi, N. Angel Benseera, Totally magic cordial labeling for some graphs (preprint).
- [5] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 4, 451–461.
- [6] Sze-Chin Shee, Yong-Song Ho, The cordiality of one-point union of n copies of a graph, Discrete Math. 117 (1993), 225–243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69cb8035-5846-4109-b1b7-b9a227c612d5