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Abstract. A graph G is said to have a totally magic cordial (TMC) labeling with constant C
if there exists a mapping f : V (G)∪E(G)→ {0, 1} such that f(a)+f(b)+f(ab) ≡ C(mod 2)
for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of
vertices and edges with label i. In this paper, we establish the totally magic cordial labeling
of one-point union of n-copies of cycles, complete graphs and wheels.
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1. INTRODUCTION

All graphs considered here are finite, simple and undirected. The set of vertices and
edges of a graph G is denoted by V (G) and E(G) respectively. Let p = |V (G)| and
q = |E(G)|. A general reference for graph theoretic ideas can be seen in [3]. The
concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling
f : V (G) → {0, 1} induces an edge labeling f∗ : E(G) → {0, 1} defined by f∗(uv) =
|f(u)− f(v)|. Such labeling is called cordial if the conditions |vf (0)− vf (1)| ≤ 1 and
|ef∗(0)− ef∗(1)| ≤ 1 are satisfied, where vf (i) and ef∗(i) (i = 0, 1) are the number
of vertices and edges with label i respectively. A graph is called cordial if it admits a
cordial labeling. The cordiality of a one-point union of n copies of graphs is given in [6].

Kotzig and Rosa introduced the concept of edge-magic total labeling in [5]. A bi-
jection f : V (G) ∪ E(G) → {1, 2, 3, . . . , p+ q} is called an edge-magic total labeling
of G if f(x)+ f(xy)+ f(y) is constant (called the magic constant of f) for every edge
xy of G. The graph that admits this labeling is called an edge-magic total graph.

The notion of totally magic cordial (TMC) labeling was due to Cahit [2] as a
modification of edge magic total labeling and cordial labeling. A graph G is said to
have TMC labeling with constant C if there exists a mapping f : V (G)∪E(G)→ {0, 1}
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such that f(a) + f(b) + f(ab) ≡ C(mod 2) for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1,
where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i.

A rooted graph is a graph in which one vertex is named in a special way so as to
distinguish it from other nodes. The special node is called the root of the graph. Let
G be a rooted graph. The graph obtained by identifying the roots of n copies of G is
called the one-point union of n copies of G and is denoted by G(n).

In this paper, we establish the TMC labeling of a one-point union of n-copies of
cycles, complete graphs and wheels.

2. MAIN RESULTS

In this section, we present sufficient conditions for a one-point union of n copies of
a rooted graph to be TMC and also obtain conditions under which a one-point union
of n copies of graphs such as a cycle, complete graph and wheel are TMC graphs.

We relate the TMC labeling of a one-point union of n copies of a rooted graph to
the solution of a system which involves an equation and an inequality.

Theorem 2.1. Let G be a graph rooted at a vertex u and for i = 1, 2, . . . , k,
fi : V (G) ∪ E(G)→ {0, 1} be such that fi(a) + fi(b) + fi(ab) ≡ C(mod 2) for all
ab ∈ E(G) and fi(u) = 0. Let nfi(0) = αi, nfi(1) = βi for i = 1, 2, . . . , k. Then the
one-point union G(n) of n copies of G is TMC if the system (2.1) has a nonnegative
integral solution for the xi’s:∣∣∣∣∣

k∑
i=1

(αi − 1)xi −
k∑

i=1

βixi + 1

∣∣∣∣∣ ≤ 1 and
k∑

i=1

xi = n. (2.1)

Proof. Suppose xi = δi, i = 1, 2, . . . , k, is a nonnegative integral solution of system
(2.1). Then we label the δi copies of G in G(n) with fi (i = 1, 2, . . . , k). As each of
these copies has the property fi(a) + fi(b) + fi(ab) ≡ C(mod 2) and fi(u) = 0 for all
i = 1, 2, . . . , k, G(n) is TMC.

Corollary 2.2. Let G be a graph rooted at a vertex u and f be a labeling such that
f(a)+f(b)+f(ab) ≡ C(mod 2) for all ab ∈ E(G) and f(u) = 0. If nf (0) = nf (1)+1,
then G(n) is TMC for all n ≥ 1.

Example 2.3. One point union of a path is TMC.

Corollary 2.4. Let G be a graph rooted at u. Let fi, i = 1, 2, 3 be labelings of G such
that fi(a) + fi(b) + fi(ab) ≡ C(mod 2) for all ab ∈ E(G), fi(u) = 0 and γi = αi − βi.

1. If γ1 = −2 and γ2 = 2, then G(n) is TMC for all n 6≡ 1(mod 4).
2. If either

a) γ1 = −1 and γ2 = 3, or
b) γ1 = 4, γ2 = 2 and γ3 = −4, or
c) γ1 = −3, γ2 = 3 and γ3 = 5,
then G(n) is TMC for all n ≥ 1.

3. If γ1 = 0 and γ2 = 4, then G(n) is TMC for all n 6≡ 3(mod 4).
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Proof. (1) The system (2.1) in Theorem 2.1 becomes |−3x1 + x2 + 1| ≤ 1, x1+x2 = n.
When n = 4t, x1 = t and x2 = 3t is the solution. When n = 4t + 1, the system has
no solution. When n = 4t + 2, x1 = t + 1 and x2 = 3t + 1 is the solution. When
n = 4t+ 3, x1 = t+ 1 and x2 = 3t+ 2 is the solution. Hence, by Theorem 2.1, G(n)

is TMC for all n 6≡ 1(mod 4).
(2a). The system (2.1) in Theorem 2.1 becomes |−2x1 + 2x2 + 1| ≤ 1, x1+x2 = n.

When n = 2t, x1 = t and x2 = t is the solution. When n = 2t + 1, x1 = t + 1 and
x2 = t is the solution. Hence, by Theorem 2.1, G(n) is TMC for all n ≥ 1.

The other parts can similarly be proved.

3. ONE-POINT UNION OF CYCLES

Let Cm be a cycle of order m. Let

V (Cm) = {vi|1 ≤ i ≤ m}

and
E(Cm) = {vivi+1|1 ≤ i < m} ∪ {vmv1} .

We consider Cm as a rooted graph with the vertex v1 as its root.

Theorem 3.1. Let C(n)
m be the one-point union of n copies of a cycle Cm. Then C(n)

m

is TMC for all m ≥ 3 and n ≥ 1.

Proof. Define the labelings f1 and f2 from V (Cm) ∪ E(Cm) into {0, 1} as follows:
f1(vi) = 0 for 1 ≤ i ≤ m, f1(vivi+1) = 1 for 1 ≤ i < m, f1(vmv1) = 1, 1 ≤ i ≤ m and

f2(vi) =

{
1 if i = m,

0 if i 6= m,
f2(vivi+1) =

{
1 if 1 ≤ i < m− 1,

0 if i = m− 1,

and f2(vmv1) = 0. Then α1 = m, β1 = m, α2 = m+ 1 and β2 = m− 1. Thus system
(2.1) in Theorem 2.1 becomes |−x1 + x2 + 1| ≤ 1, x1 + x2 = n. When n = 2t, x1 = t
and x2 = t is the solution. When n = 2t + 1, x1 = t + 1 and x2 = t is the solution.
Hence, by Theorem 2.1, C(n)

m is TMC for all m ≥ 3 and n ≥ 1.

4. ONE-POINT UNION OF COMPLETE GRAPHS

Let Km be a complete graph of order m. Let

V (Km) = {vi|1 ≤ i ≤ m}

and
E(Km) = {vivj |i 6= j, 1 ≤ i ≤ m, 1 ≤ j ≤ m} .

We consider Km as a rooted graph with the vertex v1 as its root. Let f : V (Km) ∪
E(Km)→ {0, 1} be a TMC labeling of Km. Without loss of generality, assume C = 1.



118 P. Jeyanthi and N. Angel Benseera

Then for any edge e = uv ∈ E(Km), we have either f(e) = f(u) = f(v) = 1 or
f(e) = f(u) = 0 and f(v) = 1 or f(e) = f(v) = 0 and f(u) = 1 or f(u) = f(v) = 0
and f(e) = 1. Thus, under the labeling f , the graph Km can be decomposed as
Km = Kp ∪Kr ∪Kp,r where Kp is the sub-complete graph in which all the vertices
and edges are labeled with 1, Kr is the sub-complete graph in which all the vertices
are labeled with 0 and edges are labeled with 1 and Kp,r is the complete bipartite
subgraph of Km with the bipartition V (Kp)∪V (Kr) and its edges are labeled with 0.
Then we find nf (0) = r + pr and nf (1) = p2+r2+p−r

2 .

Table 1. Possible values of αi and βi for distinct labelings of Km

i p r αi βi

1 0 m m m2−m
2

2 1 m-1 2× (m− 1) m2−3m+4
2

3 2 m-2 3× (m− 2) m2−5m+12
2

4 3 m-3 4× (m− 3) m2−7m+24
2

. . . . .

. . . . .

. . . . .⌊
m+1

2

⌋ ⌊
m−1

2

⌋ ⌈
m+1

2

⌉ ⌊
m−1

2

⌋
×

⌈
m+1

2

⌉ [
(bm−1

2 c)
2
+(dm+1

2 e)
2
+bm−1

2 c+dm+1
2 e

]
2

Table 1 gives the possible values of αi and βi for distinct labelings fi of Km such
that fi(a) + fi(b) + fi(ab) ≡ 1(mod 2) for all ab ∈ E(Km).

Theorem 4.1. Let K(n)
m be the one-point union of n copies of a complete graph Km.

If
√
m− 1 has an integer value, then K

(n)
m is TMC for m ≡ 1, 2(mod 4).

Proof. Let f : V (Km) ∪ E(Km) → {0, 1} be a TMC labeling of Km. Under the
labeling f , the graph Km can be decomposed as Km = Kp ∪ Kr ∪ Kp,r. Then we
have, nf (0) = r + pr and nf (1) = p2+r2+p−r

2 . By Corollary 2.2, K(n)
m is TMC if

nf (0) = nf (1) + 1. Whenever, nf (0) = nf (1) + 1, p2 + p(1 − 2r) + r2 − 3r + 2 = 0.
This implies that r = 1

2

[
(m+ 1)±

√
m− 1

]
as p = m− r. Also, nf (0) = nf (1) + 1 is

possible only when m ≡ 1, 2(mod 4). Therefore, K(n)
m is TMC for m ≡ 1, 2(mod 4), if√

m− 1 has an integer value

Theorem 4.2 ([4]). Let G be an odd graph with p + q ≡ 2(mod 4). Then G is not
TMC.

Theorem 4.3. Let K(n)
m be the one-point union of n copies of a complete graph Km.

(i) If m ≡ 0(mod 8), then K
(n)
m is not TMC for n ≡ 3(mod 4).

(ii) If m ≡ 4(mod 8), then K
(n)
m is not TMC for n ≡ 1(mod 4).

Proof. Clearly, p = |V (Kn
m)| = n(m − 1) + 1 and q = |E(Kn

m)| = nm(m−1)
2 so that

p+ q = n(m−1)(m+2)
2 + 1.

Part (i) Assume m = 8k and n = 4l + 3. Since the degree of every vertex is odd and
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p+ q ≡ 2(mod 4), it follows from Theorem 4.2 that K(n)
m is not TMC.

Part (ii) can similarly be proved.

Theorem 4.4. K(n)
4 is TMC if and only if n 6≡ 1(mod 4).

Proof. Necessity follows from Theorem 4.3 and for sufficiency we define the labelings
f1 and f2 as follows: f1(vi) = 0 for 1 ≤ i ≤ 4, f1(vivj) = 1 for 1 ≤ i, j ≤ 4 and
under the labeling f2 decompose K4 as K1 ∪ K3 ∪ K1,3. From Table 1, we observe
that α1 = 4, β1 = 6, α2 = 6 and β2 = 4. Therefore, by Corollary 2.4 (1), K(n)

4 is
TMC if n 6≡ 1(mod 4).

Theorem 4.5. K(n)
5 is TMC for all n ≥ 1.

Proof. Define f : V (K
(n)
5 ) ∪ E(K

(n)
5 )→ {0, 1} as follows:

f(vi) =

{
0 if i 6= 5,

1 if i = 5

and

f(vivj) =

{
1 if 1 ≤ i, j ≤ 4,

0 if i = 5 or j = 5.

Clearly, α = β + 1 = 8. Therefore, by Corollary 2.2, K(n)
5 is TMC for all n ≥ 1.

Theorem 4.6. K(n)
6 is TMC for all n ≥ 1.

Proof. Let f1 and f2 be the labelings from V (K
(n)
6 ) ∪ E(K

(n)
6 ) into {0, 1}. Then,

under the labelings f1 and f2 the graph K6 can be decomposed as K1∪K5∪K1,5 and
K2 ∪K4 ∪K2,4 respectively. Clearly, α1 = 10, β1 = 11, α2 = 12 and β2 = 9. Hence,
by Corollary 2.4 (2a), K(n)

6 is TMC for all n ≥ 1.

Theorem 4.7. K(n)
7 is TMC for all n ≥ 1.

Proof. Let f1, f2 and f3 be the labelings from V (K
(n)
7 ) ∪ E(K

(n)
7 ) into {0, 1}. Then

under the labelings f1, f2 and f3 the graph K7 can be decomposed as K3∪K4∪K3,4,
K4 ∪K3 ∪K4,3 and K5 ∪K2 ∪K5,2 respectively. We observe that α1 = 16, β1 = 12,
α2 = 15, β2 = 13, α3 = 12 and β3 = 16. Hence, by Corollary 2.4 (2b), K(n)

7 is TMC
for all n ≥ 1.

Theorem 4.8. K(n)
8 is TMC if and only if n 6≡ 3(mod 4).

Proof. Necessity follows from Theorem 4.3 and for sufficiency we define the labelings
f1 and f2 as follows: under the labelings f1 and f2 the graph K8 can be decomposed
as K2∪K6∪K2,6 and K3∪K5∪K3,5 respectively. Clearly, α1 = 18, β1 = 18, α2 = 20

and β2 = 16. Hence, by Corollary 2.4 (3), K(n)
8 is TMC if n 6≡ 3(mod 4).

Theorem 4.9. K(n)
9 is TMC for all n ≥ 1.
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Proof. Under the labelings f1, f2 and f3 the graph K9 can be decomposed as
K2 ∪K7 ∪K2,7, K3 ∪ K6 ∪ K3,6 and K4 ∪ K5 ∪ K4,5 respectively. We observe that
α1 = 21, β1 = 24, α2 = 24, β2 = 21, α3 = 25 and β3 = 20. Therefore, by Corolla-
ry 2.4 (2c), the graph K(n)

9 is TMC for all n ≥ 1.

5. ONE-POINT UNION OF WHEELS

A wheel Wm is obtained by joining the vertices v1, v2, . . . , vm of a cycle Cm to an
extra vertex v called the centre. We consider Wm as a rooted graph with v as its root.

Theorem 5.1. Let W (n)
m be the one-point union of n copies of a wheel Wm.

(i) If m ≡ 0(mod 4), then W
(n)
m is TMC for all n ≥ 1.

(ii) If m ≡ 1(mod 4), then W
(n)
m is TMC for n 6≡ 3(mod 4).

(iii) If m ≡ 2(mod 4), then W
(n)
m is TMC for all n ≥ 1.

(iv) If m ≡ 3(mod 4), then W
(n)
m is TMC for n 6≡ 1(mod 4).

Proof. Define the labelings f1,f2,f3,f4 and f5 as follows: fj(v) = 0 for j = 1, 2, 3, 4, 5.
f1(vmv1) = 0,

f1(vi) =

{
1 if i ≡ 0(mod 4),
0 if i 6≡ 0(mod 4),

f1(vivi+1) =

{
1 if i ≡ 1, 2(mod 4),
0 if i ≡ 0, 3(mod 4)

and
f1(vvi) =

{
1 if i 6≡ 0(mod 4),
0 if i ≡ 0(mod 4).

f2(vi) = f2(vivi+1) = 1, f2(vvi) = 0 for i = 1, 2, . . . ,m and f2(vmv1) = 1.
f3(vi) = f1(vi), f3(vivi+1) = f1(vivi+1), f3(vvi) = f1(vvi) for i = 1, 2, . . . ,m
and f3(vmv1) = 1. f4(v1) = 1, f4(v1v2) = f4(vmv1) = 0, f4(vi) = f3(vi),
f4(vivi+1) = f3(vivi+1), f4(vvi) = f3(vvi) for i = 2, 3, . . . ,m and f4(vv1) = 0.

f5(vi) =

{
1 if i ≡ 1(mod 2),
0 if i ≡ 0(mod 2),

f5(vvi) =

{
0 if i ≡ 1(mod 2),
1 if i ≡ 0(mod 2),

f5(vivi+1) = f5(vmv1) = 0.
Case 1. m ≡ 0 (mod 4).
If we consider the labeling f1 we have, nf1(0) = nf1(1) + 1. Then, by Corollary 2.2,
W

(n)
m is TMC for all n ≥ 1.

Case 2. m ≡ 1 (mod 4).
If we consider the labelings f2, f3 and f4. We have α2 = 3m+1

2 , β2 = 3m+1
2 , α3 = 3m+5

2 ,
β3 = 3m−3

2 , α4 = m + 1, β4 = 2m. Then, system (2.1) in Theorem 2.1 becomes
|−x2 + 3x3 − (m+ 1)x4 + 1| ≤ 1, x2 + x3 + x4 = n. When n = 4t, x2 = 3t, x3 = t,
x4 = 0 is a solution. When n = 4t+1, x2 = 3t+1, x3 = t, x4 = 0 is a solution. When
n = 4t+2, x2 = 3t+2, x3 = t, x4 = 0 is a solution. When n = 4t+3, the system has
no solution. Hence, by Theorem 2.1, W (n)

m is TMC if n 6≡ 3(mod 4).
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Case 3. m ≡ 2 (mod 4).
If we consider the labelings f2, f3, f4 and f5, we have α2 = m+1, β2 = 2m, α3 = 3m

2 ,
β3 = 3m+2

2 , α4 = 3m+4
2 , β4 = 3m−2

2 , α5 = 2m + 1, β5 = m. Thus, system (2.1) in
Theorem 2.1 becomes |−mx2 − 2x3 + 2x4 +mx5 + 1| ≤ 1, x2 + x3 + x4 + x5 = n.
When n = 4t, x2 = x3 = x4 = x5 = t is a solution. When n = 4t + 1, x2 = t,
x3 = t+ 1, x4 = t, x5 = t is a solution. When n = 4t+ 2, x2 = t+ 1, x2 = t, x4 = t,
x5 = t+ 1 is a solution. When n = 4t+ 3, x2 = t+ 1, x3 = t+ 1, x4 = t, x5 = t+ 1

is a solution. Hence, by Theorem 2.1, W (n)
m is TMC for all n ≥ 1.

Case 4. m ≡ 3 (mod 4).
If we consider the labelings f3 and f4. We have α3 = 3m−1

2 , β3 = 3m+3
2 , α4 = 3m+3

2
and β4 = 3m−1

2 . Therefore, system (2.1) in Theorem 2.1 becomes, |−3x3 + x4 + 1| ≤ 1,
x3 + x4 = n. When n = 4t, x3 = t, x4 = 3t is a solution. When n = 4t+1,the system
has no solution. When n = 4t + 2, x3 = t + 1, x4 = 3t + 1 is a solution. When
n = 4t+3, x3 = t+1, x4 = 3t+2 is a solution. Hence, by Theorem 2.1, W (n)

m is TMC
if n 6≡ 1(mod 4).
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