Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Trapezoidal inequalities for functions of diverse nature are useful in numerical computations. The authors have proved an identity for a generalized integral operator via a differentiable function. By applying the established identity, the generalized trapezoidal type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in the recent decades. Various special cases have been identified. Some applications of presented results have been analyzed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
35--46
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora, Albania
autor
- COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan
autor
- Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey
Bibliografia
- [1] A. O. Akdemir, A. Ekinci and E. Set, Conformable fractional integrals and related new integral inequalities, J. Nonlinear Convex Anal. 18 (2017), no. 4, 661-674.
- [2] T. Antczak, Mean value in invexity analysis, Nonlinear Anal. 60 (2005), no. 8, 1473-1484.
- [3] S. M. Aslani, M. R. Delavar and S. M. Vaezpour, Inequalities of Fejér type related to generalized convex functions with applications, Int. J. Anal. Appl. 16 (2018), no. 1, 38-49.
- [4] F. Chen and S. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl. 9 (2016), no. 2, 705-716.
- [5] Y.-M. Chu, M. A. Khan, T. U. Khan and T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4305-4316.
- [6] M. R. Delavar and M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities, Springer Plus 5 (2016), Paper No. 1661.
- [7] M. R. Delavar and S. S. Dragomir, On η-convexity, Math. Inequal. Appl. 20 (2017), no. 1, 203-216.
- [8] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91-95.
- [9] A. Ekinci and M. E. Özdemir, Some new integral inequalities via Riemann-Liouville integral operators, Appl. Comput. Math. 18 (2019), no. 3, 288-295.
- [10] G. Farid and A. U. Rehman, Generalizations of some integral inequalities for fractional integrals, Ann. Math. Sil. 32 (2018), no. 1, 201-214.
- [11] I. İşcan and M. Kunt, Fractional Hermite-Hadamard-Fejer type inequalities for GA-convex functions, Turkish J. Inequalities 2 (2018), 1-20.
- [12] M. Jleli, D. O’Regan and B. Samet, On Hermite-Hadamard type inequalities via generalized fractional integrals, Turkish J. Math. 40 (2016), no. 6, 1221-1230.
- [13] A. Kashuri and R. Liko, Ostrowski type fractional integral operators for generalized (r; s, m, φ)-preinvex functions, Appl. Appl. Math. 12 (2017), no. 2, 1017-1035.
- [14] A. Kashuri and R. Liko, Some new Hermite-Hadamard type inequalities and their applications, Studia Sci. Math. Hungar. 56 (2019), no. 1, 103-142.
- [15] A. Kashuri, E. Set and R. Liko, Some new fractional trapezium-type inequalities for preinvex functions, Fractal Fract. 3 (2019), 1-13.
- [16] M. A. Khan, Y. M. Chu, A. Kashuri and R. Liko, Hermite-Hadamard type fractional integral inequalities for MT(r;g,m,ϕ)-preinvex functions, J. Comput. Anal. Appl. 26 (2019), no. 8, 1487-1503.
- [17] M. A. Khan, Y.-M. Chu, A. Kashuri, R. Liko and G. Ali, Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Spaces 2018 (2018), Article ID 6928130.
- [18] W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl. 9 (2016), no. 3, 766-777.
- [19] C. Luo, T. S. Du, M. A. Khan, A. Kashuri and Y. Shen, Some k-fractional integrals inequalities through generalized Λϕm-MT-preinvexity, J. Comput. Anal. Appl. 27 (2019), no. 4, 690-705.
- [20] M. V. Mihai, Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus, Tamkang J. Math. 44 (2013), no. 4, 411-416.
- [21] S. Mubeen and G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci. 7 (2012), no. 1-4, 89-94.
- [22] I. Mumcu, E. Set and A. O. Akdemir, Hermite-Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals, Miskolc Math. Notes 20 (2019), no. 1, 409-424.
- [23] D. Nie, S. Rashid, A. O. Akdemir, D. Baleanu and J.-B. Liu, On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Mathematics 7 (2019), no. 8, Paper No. 727.
- [24] N. Okur and F. B. Yalçın, Two-dimensional operator harmonically convex functions and related generalized inequalities, Turkish J. Sci. 4 (2019), no. 1, 30-38.
- [25] O. Omotoyinbo and A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech. 1 (2014), 1-12.
- [26] M. E. Özdemir, S. S. Dragomir and c. Yıldız, The Hadamard inequality for convex function via fractional integrals, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 5, 1293-1299.
- [27] M. Z. Sarikaya and F. Ertuğral, On the generalized Hermite-Hadamard inequalities, preprint (2017), https://www.researchgate.net/publication/321760443.
- [28] M. Z. Sarikaya and H. Yildirim, On generalization of the Riesz potential, Indian J.Math.Math. Sci. 3 (2007), no. 2, 231-235.
- [29] E. Set, A. O. Akdemir and E. A. Alan, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities involving fractional integral operators, Filomat 33 (2019), no. 8, 2367-2380.
- [30] E. Set, A. O. Akdemir and B. Çelik, On generalization of Fejér type inequalities via fractional integral operators, Filomat 32 (2018), no. 16, 5537-5547.
- [31] E. Set, M. A. Noor, M. U. Awan and A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl. 2017 (2017), Paper No. 169.
- [32] H. Wang, T. Du and Y. Zhang, k-fractional integral trapezium-like inequalities through (h, m)-convex and (α, m)-convex mappings, J. Inequal. Appl. 2017 (2017), Paper No. 311.
- [33] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1988), no. 1, 29-38.
- [34] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl. 2012 (2012), Article ID 980438.
- [35] H. Yaldız and A. O. Akdemir, Katugampola fractional integrals within the class of convex functions, Turkish J. Sci. 3 (2018), no. 1, 40-50.
- [36] X.-M. Zhang, Y.-M. Chu and X.-H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its applications, J. Inequal. Appl. 2010 (2010), Art. ID 507560.
- [37] Y. Zhang, T.-S. Du, H. Wang, Y.-J. Shen and A. Kashuri, Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl. 2018 (2018), Paper No. 49.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69caa7d5-16f2-408b-b2e4-32b20059880b