Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Mechanical, hygric, and durability properties of cement mortar with MSWI bottom ash as partial silica sand replacement
Języki publikacji
Abstrakty
Przeprowadzono badania popiołu dennego (PD) ze spalania stałych odpadów komunalnych jako zamiennika części piasku krzemionkowego w zaprawach. Zbadany laserowo rozkład ziarnowy tego popiołu mieścił się w przedziale od 0,1 do 100 μm i uzupełniał w tym zakresie krzywą piasku. Dodatek PD spowodował spadek gęstości pozornej zaprawy przy niezmienionej gęstości właściwej. Rozkład ziarnowy porów w zakresie od 0,07 do 100 μm był w zaprawie z dodatkiem 10% PD podobny do zaprawy wzorcowej. Natomiast dodatek 40% PD spowodował jego zwiększenie. Wytrzymałość na ściskanie i zginanie z 10% dodatkiem PD była większa od wzorcowej, a z 40% PD nieznacznie mniejsza. Transport wody uległ spowolnieniu w zaprawach z dodatkiem PD, a retencja wody była mniejsza. Natomiast nasiąkliwość była większa w zaprawach z dodatkiem PD. Odporność na zamrażanie była najlepsza w przypadku zapraw z dodatkiem PD.
A possible application of bottom ash (BA) produced in the municipal solid waste incineration (MSWI) facilities as a partial replacement of silica sand in cement mortar was studied. The particle size distribution of BA and silica sand was measured by laser-diffraction and standard-sieve methods. The composition of BA was analyzed using XRF and SEM combined with EDS. Additional basic characteristics of BA, such as pH, solubility in water, pozzolanic activity, powder density, and matrix density, were determined as well. For the cement mortars, basic physical characteristics and mechanical properties were firstly tested. Then, water absorption coefficient and moisture diffusivity were determined using the free water intake test and inverse analysis of moisture profiles, respectively. The moisture accumulation was characterized by sorption and desorption isotherms and water retention curves. Durability of cement mortars was assessed by the freeze/thaw resistance test. Experimental results show that up to the 40% aggregate replacement level the application of BA can reduce the penetration of liquid water into the analyzed mortars and enhance their freeze/thaw resistance while the strength is basically unaffected. Therefore, BA could be considered a prospective material in cement-composite mix designing.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
67--80
Opis fizyczny
Bibliogr. 35 poz., il., tab.
Twórcy
autor
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
Bibliografia
- 1. Y. Li, J. J. Chen, A. K. H. Kwan, Roles of water film thickness in fresh and hardened properties of mortar. Adv. in Cem. Res. 25, 171-182 (2013).
- 2. E. Horszczaruk, E. Mijowska, K. Cendrowski, S. Mijowska, P. Sikora, The influence of nanosilica with different morphology on the mechanical properties of cement mortars. Cement Wapno Beton, 79, 24-32 (2013).
- 3. M. Jalal, M. Fathi, M. Farzad, Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete. Mechanics of Materials, 61, 11-27 (2013).
- 4. E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, Fly-Ash Influence on the Properties of High Performance Concrete. Cement Wapno Beton, 75, 189-204 (2009).
- 5. W. Grzmil, Z. Owsiak, The influence of carbonation of self-compacting concrete with granulated blastfurnace slag addition on its chosen properties. Cement Wapno Beton, 79, 137-144 (2013).
- 6. H. K. Kim, H. K. Lee, Effects of High Volumes of Fly Ash, Blast Furnace Slag, and Bottom Ash on Flow Characteristics, Density, and Compressive Strength of High-Strength Mortar. Journal of Materials in Civil Engineering, 25, 662-665 (2013).
- 7. R. Drochytka, J. Zach, A. Korjenic, J. Hroudová, Improving the energy efficiency in buildings while reducing the waste using autoclaved aerated concrete made from power industry waste. Energy and Buildings, 58, 319-323 (2013).
- 8. J. P. Gonçalves, L. M. Taveres, R. D. Toledo Filho, E. M. R. Fairbairn, Performance evaluation of cement mortars modified with metakaolin or ground brick. Construction and Building Materials, 23, 1971–1979 (2009).
- 9. M. C. Nataraja, T. S. Nagaraj, A. Reddy, Proportioning concrete mixes with quarry wastes. Cement Concrete and Aggregates, 23, 81–87 (2001).
- 10. M. Keppert, Z. Pavlík, V. Tydlitát, P. Volfová, S. Švarcová, M. Šyc, R. Černý, Properties of municipal solid waste incineration ashes with respect to their separation temperature. Waste Management Research, 30, 1041-1048 (2012).
- 11. M. Keppert, P. Reiterman, Z. Pavlík, M. Pavlíková, M. Jerman, R. Černý, Municipal solid waste incineration ashes and their potential for partial replacement of Portland cement and fine aggregates in concrete. Cement Wapno Beton, 77, 187-193 (2010).
- 12. Z. Pavlík, M. Keppert, M. Pavlíková, P. Volfová, R. Černý, Environmental friendly concrete production using municipal solid waste incineration materials, WIT Transactions on Ecology and the Environment, 148, 325-334 (2011).
- 13. H. S. Shi, L.L. Khan, Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. Journal of Hazardous Materials, 164, 750–754 (2009).
- 14. Y. Yang, Y. Yang, Q. Wang, Q. Huang, Release of heavy metals from concrete made with cement from cement kiln co-processing of hazardous wastes in pavement scenarios. Environmental Engineering Science, 28, 35–42 (2011).
- 15. C. Lampris, J. A. Stegemann, M. Pellizon-Birelli, G. D. Fowler, C. R. Cheeseman, Metal leaching from monolithic stabilized/solidified air pollution control residues. Journal of Hazardous Materials, 185, 1115–1123 (2011).
- 16. J. R. Conner, Chemical Fixation and Solidification of Hazardous Wastes. Van Nostrand-Reinhold, New York 1990.
- 17. M. Collepardi, S. Collepardi, D. Ongaro, A.Q. Curzio, M. Sammartino, Concrete with Bottom Ash from Municipal Solid Wastes Incinerators. Proc. of 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, 289-298, 2010.
- 18. H. A. Razak, S. Naganathan, S. N. A. Hamid, Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material, Journal of Hazardous Materials, 172, 862-867 (2009).
- 19. O. Gines, J. M. Chimenos, A. Vizcarro, J. Formosa, J. R. Rosell, Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. Journal of Hazardous Materials, 169, 643-650 (2009).
- 20. R. Cioffi, F. Colangelo, F. Montagnaro, L. Santoro, Manufacture of artificial aggregate using MSWI bottom ash. Waste Management, 31, 281-288 (2011).
- 21. S. Sorlini, A. Abba, C. Collivignarelli, Recovery of MSWI and soil washing residues as concrete aggregates. Waste Management, 31, 289-297 (2011).
- 22. Z. Pavlík, M. Keppert, M. Pavlíková, P. Volfová, R. Černý, Application of MSWI Bottom Ash as Alternative Aggregate in Cement Mortar. Management of Natural Resources. WIT Transactions on Ecology and the Environment, 148, 335-342 (2011).
- 23. R. del Valle-Zermeño, J. Formosa, J. M. Chimenos, M. Martínez, A.I. Fernández, Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Management, 33, 621–627 (2013).
- 24. ČSN EN 12390-5. Testing of hardened concrete – Part 5: Bending strength. Czech Standardization Institute, Prague, 2007.
- 25. ČSN EN 12390-3. Testing of hardened concrete – Part 3: Compressive strength. Czech Standardization Institute, Prague, 2007.
- 26. I. Štubňa, A. Trník, L. Vozár, Determination of Young’s modulus of ceramics from flexural vibration at elevated temperatures. Acta Acustica United with Acustica, 97, 1-7 (2011).
- 27. E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free water intake as means of material characterization. Journal of Building Physics, 33, 29-44 (2009).
- 28. C. Matano, On the relation between the diffusion coefficient and concentration of solid metals. Japanese Journal of Physics, 8, 109-115 (1933).
- 29. Z. Pavlík, J. Žumár, I. Medveď, R. Černý, Water vapor adsorption in porous building materials: experimental measurement and theoretical analysis. Transport in Porous Media, 91, 939-954 (2012).
- 30. SBI Report 295. Retention curves measured using pressure plate and pressure membrane apparatus. Danish Building Research Institute, Horsholm, 1998.
- 31. ČSN 73 1322/Z1. Concrete testing – Hardened concrete – Frost resistance. Czech Standardization Institute, Prague, 2003.
- 32. E. Vejmelková, M. Pavlíková, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High Performance Concrete Containing Lower Slag Amount: A Complex View of Mechanical and Durability Properties. Constr. Build. Mat., 23, 2237-2245 (2009).
- 33. E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High Performance Concrete with Czech Metakaolin: Experimental Analysis of Strength, Toughness and Durability Characteristics. Constr. Build. Mat., 24, 1404-1411 (2010).
- 34. P. H. Groenevelt, G. H. Bolt, Water retention in soil. Soil Science, 113, 238-245 (1971).
- 35. P. C. Aïtcin, The durability characteristics of high performance concrete: a review. Cem. Concr. Comp., 25, 409-420 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69ca5608-ac81-436f-8109-b7a0593e1ee0