PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anti-icing and hydrophobic performance of chemically modified waterborne polyurethane hybrid coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of ice is evident in many industries, such as aviation, transport and energy. The accumulation of ice not only causes monetary losses, but also threatens safety. In the aviation industry, ice build-up leads to changes in aerodynamics as well as damage to parts and sensors. This in turn contributes to emergency landings, flight cancellations, the need to replace parts, and increased energy consumption. Ice build-up can be prevented by using active or passive systems. Due to the cost, time-consuming nature and environmental disadvantages of using active systems, the development of anti-icing coatings is becoming increasingly popular. In this work, an air spraying method was used to fabricate the sample. A waterborne polyurethane paint was applied to aluminum substrates. Modification of these coatings with functionalized organosilicon compounds was done. Compounds with the same core were used. The organosilicon compounds contained functional groups that direct hydro- and icephobic properties of the surface. Roughness, wettability (contact angle and roll-off angle) and ice adhesion force measurements were taken. Lower roll-off angle values were obtained for each of the chemical modifications. The reduction was more than 75%. On this basis, it can be concluded that the hydrophobic properties of the coatings were improved. A decrease in the ice adhesion force values was obtained, which demonstrated the favorable effect of the icephobic properties of the coatings. This reduction for two of the types of modification was more than 50% compared to the reference sample. The results of the roughness, wettability and ice adhesion were also linked, showing what relationships exist between them.
Rocznik
Strony
21--29
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Technology Partners Foundation, ul. Bitwy Warszawskiej 7A, 02-366 Warszawa, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warszawa, Poland
  • Technology Partners Foundation, ul. Bitwy Warszawskiej 7A, 02-366 Warszawa, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warszawa, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warszawa, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warszawa, Poland
  • Technology Partners Foundation, ul. Bitwy Warszawskiej 7A, 02-366 Warszawa, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warszawa, Poland
  • Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
  • Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
  • SINTEF Industry, Department of Materials and Nanotechnology, Forskningsveien 1, 0373 Oslo, Norway
autor
  • SINTEF Industry, Department of Process Technology, Forskningsveien 1, 0373 Oslo, Norway
Bibliografia
  • [1] Chandrasekaran M., Batchelor A.W., Loh N.L. Materials Degradation And Its Control By Surface Engineering (3rd Edition). World Scientific; 2011.
  • [2] Dwivedi D. Surface Engineering, Enhancing Life of Tribological Components. 2018. https://doi.org/ 10.1007/978-81-322-3779-2
  • [3] Dolata A.J., Dyzia M., Wieczorek J. Tribological Properties of Single (AlSi7/SiCp, AlSi7/GCsf) and Hybrid (AlSi7/SiCp + GCsf) Composite Layers Formed in Sleeves via Centrifugal Casting. Materials 2019;12:2803. https://doi.org/10.3390/ma12172803
  • [4] Cohen N., Dotan A., Dodiuk H., Kenig S. Superhydrophobic Coatings and Their Durability. Materials and Manufacturing Processes 2016;31:1143-55. https://doi.org/10.1080/10426914.2015.1090600
  • [5] Mao K., Sun Y., Bloyce A., Bell T. Surface coating effects on contact stress and wear: An approach of surface engineering design and modelling. Surface Engineering 2010;26:142-8. https://doi.org/10.1179/ 174329409X446313
  • [6] Ng Y., Tay S., Hong L. Formation of Icephobic Surface with Micron-Scaled Hydrophobic Heterogeneity on Polyurethane Aerospace Coating 2018. https://doi.org/10.1021/acsami.8b13403
  • [7] Li J., Zhao Y., Hu J., Shu L., Shi X. Anti-icing Performance of a Superhydrophobic PDMS / Modified Nano-silica Hybrid Coating for Insulators 2012.
  • [8] Li K., Hong N. Dynamic heat load calculation of a bridge anti-icing system. Applied Thermal Engineering 2018;128:198-203. https://doi.org/10.1016/j.applthermaleng.2017.09.024
  • [9] Mishnaevsky L., Id J., Branner K., Petersen H.N., Beauson J., Mcgugan M. et al. Materials for Wind Turbine Blades : An Overview 2017:1-24. https://doi.org/10.3390/ma10111285
  • [10] Madi E., Pope K., Huang W., Iqbal T. A review of integrating ice detection and mitigation for wind turbine blades. Renewable and Sustainable Energy Reviews 2019;103:269-81. https://doi.org/10.1016/j.rser.2018.12.019
  • [11] Yirtici O., Ozgen S., Tuncer I.H. Predictions of ice formations on wind turbine blades and power production losses due to icing. Wind Energy 2019;22:945-58. https://doi.org/10.1002/we.2333
  • [12] Zhang S., Dam-Johansen K., Nørkjær S., Bernad P.L., Kiil S. Erosion of wind turbine blade coatings - Design and analysis of jet-based laboratory equipment for performance evaluation. Progress in Organic Coatings 2015;78:103-15. https://doi.org/10.1016/j.porgcoat.2014.09.016
  • [13] Ibrahim M.E., Medraj M. Water droplet erosion of wind turbine blades: Mechanics, testing, modeling and future perspectives. Vol. 13. 2020. https://doi.org/10.3390/ma13010157.
  • [14] Kraj A.G., Bibeau E.L. Phases of icing on wind turbine blades characterized by ice accumulation. Renewable Energy 2010; 35:966-72. https://doi.org/10.1016/ j.renene.2009.09.013
  • [15] Yirtici O. et al. Aerodynamic validation studies on the performance analysis of iced wind turbine blades. Computers and Fluids 2019;192. https://doi.org/10. 1016/j.compfluid.2019.104271
  • [16] Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. Water and ice adhesion to solid surfaces: Common and specific, the impact of temperature and surface wettability. Coatings 2020;10:1-23. https://doi.org/10.3390/coatings10070648
  • [17] Das S., Kumar S., Samal S.K., Mohanty S., Nayak S.K. A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications. Industrial and Engineering Chemistry Research 2018; 57:2727-45. https://doi.org/10.1021/acs.iecr.7b04887
  • [18] Barz J., Haupt M., Oehr C., Hirth T., Grimmer P. Stability and water wetting behavior of superhydrophobic polyurethane films created by hot embossing and plasma etching and coating. Plasma Processes and Polymers 2019;16:8-10. https://doi.org/10.1002/ ppap.201800214
  • [19] Hejazi I., Seyfi J. et al. Investigating the interrelationship of superhydrophobicity with surface morphology, topography and chemical composition in spray-coated polyurethane/silica nanocomposites. Polymer 2017; 128:108-18. https://doi.org/10.1016/j.polymer.2017.09.020
  • [20] Liu J., Janjua Z.A. et al. Super-hydrophobic/icephobic coatings based on silica nanoparticles modified by self-assembled monolayers. Nanomaterials 2016;6. https://doi.org/10.3390/nano6120232
  • [21] He Z., Vågenes E.T., Delabahan C., He J., Zhang Z. Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces. Scientific Reports 2017;7:1-7. https://doi.org/10.1038/srep42181
  • [22] Kozera R., Przybyszewski B., Krawczyk Z.D., Boczkowska A., Casas X.G., Sztorch B. et al. Hydrophobic and Anti-Icing Behavior of UV-Laser-Treated Polyester Resin-Based Gelcoats 2020:1642.
  • [23] Fu Q., Wu X. et al. Development of Sol-Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Appl Mater Interfaces 2014;6:20685-92. https://doi.org/10.1021/am504348x
  • [24] He M., Wang J., Li H., Song Y. Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 2011;7:3993. https://doi.org/10.1039/ c0sm01504k
  • [25] Sunny S., Vogel N., Howell C., Vu T.L., Aizenberg J. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition. Advanced Functional Materials 2014;24:6658-67. https://doi.org/10.1002/adfm.201401289
  • [26] Moghadam R.K., Taeibi M., Javadi K., Heyat S., Miller R. Influence of new superhydrophobic micro-structures on delaying ice formation. Colloids and Surfaces A 2020; 595:124675. https://doi.org/10.1016/j.colsurfa.2020.124675
  • [27] Nazhipkyzy M. et al. Influence of superhydrophobic properties on deicing. Journal of Engineering Physics and Thermophysics 2016;89:1498-503. https://doi.org/10.1007/s10891-016-1516-3
  • [28] Susoff M. et al. Evaluation of icephobic coatings - Screening of different coatings and influence of roughness. Applied Surface Science 2013;282:870-9. https://doi.org/10.1016/j.apsusc.2013.06.073
  • [29] Wu X., Silberschmidt V.V., Hu Z.T., Chen Z. When superhydrophobic coatings are icephobic: Role of surface topology. Surface and Coatings Technology 2019;358:207-14. https://doi.org/10.1016/j.surfcoat. 2018.11.039
  • [30] Lin Y., Chen H., Wang G., Liu A. Recent progress in preparation and anti-icing applications of superhydrophobic coatings. Coatings 2018;8. https://doi.org/10.3390/coatings8060208
  • [31] Mark J.E. Some Interesting Things about Polysiloxanes. Acc Chem Res 2004;37:946-53. https://doi.org/10.1021/ar030279z
  • [32] Feng L., Zhang X., Dai J., Ge Z., Chao J., Bai C. Synthesis and surface properties of polyurethane modified by polysiloxane. Front Chem China 2008;3:1-5. https://doi.org/10.1007/s11458-008-0001-8
  • [33] Wang W., Bai X., Sun S., Gao Y., Li F., Hu S. Polysiloxane-Based Polyurethanes with High Strength and Recyclability. IJMS 2022;23:12613. https://doi.org/10.3390/ijms232012613
  • [34] Santiago A. et. al. Urethane/Siloxane Copolymers with Hydrophobic Properties. Macromolecular Symposia 2012;321-322:150-4. https://doi.org/10.1002/masy.201251126.
  • [35] Ziętkowska K., Kozera R., Przybyszewski B., Boczkowska A., Sztorch B., Pakuła D. et al. Hydro- and Icephobic Properties and Durability of Epoxy Gelcoat Modified with Double-Functionalized Polysiloxanes. Materials 2023;16:875. https://doi.org/10.3390/ma1 6020875
  • [36] Kozera R., Przybyszewski B., Żołyńska K., Boczkowska A., Sztorch B., Przekop R.E. Hybrid Modification of Unsaturated Polyester Resins to Obtain Hydro- and Icephobic Properties. Processes 2020;8:1635. https://doi.org/10.3390/pr8121635
  • [37] Shen Y., Wu X., Tao J., Zhu C., Lai Y., Chen Z. Icephobic materials: Fundamentals, performance evaluation, and applications. Progress in Materials Science 2019; 103:509-57. https://doi.org/10.1016/j.pmatsci. 2019.03.004
  • [38] Wang Y., Liu J., Li M., Wang Q., Chen Q. The icephobicity comparison of polysiloxane modified hydrophobic and superhydrophobic surfaces under condensing environments. Applied Surface Science 2016; 385:472-80. https://doi.org/10.1016/j.apsusc.2016.05.117
  • [39] Bharathidasan T., Kumar S.V., Bobji M.S. Chakradhar RPS, Basu BJ. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces. Applied Surface Science 2014;314:241-50. https://doi.org/10.1016/j.apsusc.2014.06.101
  • [40] Ling E.J.Y. et al. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects. ACS Appl Mater Interfaces 2016;8:8789-800. https://doi.org/10.1021/acsami.6b00187
  • [41] Kozera R., Ziętkowska K., Przybyszewski B., Boczkowska A., Sztorch B., Przekop R.E. et al. The effect of modification of gelcoat based on unsaturated polyester resin with polysiloxanes on icephobicity, hydrophobicity and durability. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023; 675:132025. https://doi.org/10.1016/j.colsurfa.2023.132025.
  • [42] Przybyszewski B. et al. „Anti-icing transparent coatings modified with bi- and tri-functional octaspherosilicates for photovoltaic panels”, Colloids Surf. Physicochem. Eng. Asp., t. 703, s. 135402, lis. 2024, DOI: 10.1016/j.colsurfa.2024.135402.
  • [43] Cui W., Jiang Y., Mielonen K., Pakkanen T.A. The verification of icephobic performance on biomimetic superhydrophobic surfaces and the effect of wettability and surface energy. Applied Surface Science 2019; 466:503-14. https://doi.org/10.1016/j.apsusc.2018.10.042
  • [44] Ziętkowska K. et al. „Transparent Silicone-Epoxy Coatings with Enhanced Icephobic Properties for Photovoltaic Applications”, Appl. Sci., t. 13, nr 13, Art. nr 13, sty. 2023, DOI: 10.3390/app13137730.
  • [45] Kozera R. et al. „Modification of gelcoat based unsaturated polyester resin with functionalized octaspherosilicates to reduce the ice adhesion strength”, Colloids Surf. -Physicochem. Eng. Asp., t. 688, 2024, DOI: 10.1016/j.colsurfa.2024.133549.
  • [46] Zhuo Y., Xiao S., Amirfazli A., He J., Zhang Z. Polysiloxane as icephobic materials - The past, present and the future. Chemical Engineering Journal 2021;405:127088. https://doi.org/10.1016/j.cej.2020.127088.
  • [47] Kozera R., Ziętkowska K., Przybyszewski B., Boczkowska A., Sztorch B., Pakuła D. et al. Spherosilicatemodified epoxy coatings with enhanced icephobic properties for wind turbines applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023;679:132475. https://doi.org/10.1016/j.colsurfa.2023.132475
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69c362a9-75c5-494d-a238-083f2c712445
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.