PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of different grain size of expanded perlite aggregate and content of silica aerogel on the characteristics of lightweight cementitious composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, an attempt was made to investigate effects of expanded perlite aggregate grain size on consistency, density, compressive strength, thermal conductivity and microstructure of 15 different composite mixes with silica aerogel. As for the samples preparation, expanded perlite aggregate of 5 different groups based on grain size, were used for sample preparation, then partially replaced by volume for 20% and 40% of hydrophobic silica aerogel particles. The results showed, that density of the samples varied between 0.35 g/cm3 and 1.5 g/cm3, flexural strength varied between 3.4 MPa and 7.4 MPa, compressive strength was in the range between 12.3 MPa and 55 MPa, thermal conductivity coefficient was in the range between 0.130 W/mK and 0.190 W/mK. Scanning electron microscopy showed that expanded perlite aggregates and silica aerogel particles are capable of being mixed and formed homogenous mixture. Nevertheless, microscope images indicated weaker adhesion of silica aerogel particles at interfacial zone as compared with expanded perlite aggregate particles. Results revealed, that both of the factors: grain size of expanded perlite aggregate particles silica aerogel content influenced the density, compressive strength and thermal conductivity. The study also indicated feasibility of expanded perlite aggregate and silica aerogel for achieving homogeneous mixture of the lightweight cementitious composites. Study demonstrated that using different size fractions of expanded perlite aggregate affects differently physical, mechanical and thermal characteristics of the lightweight cementitious composite with silica aerogel.
Rocznik
Strony
art. no. 174338
Opis fizyczny
Bibliogr. 23 poz., fot., tab., wykr.
Twórcy
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, PL-60965 Poznan, Poland
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, PL-60965 Poznan, Poland
Bibliografia
  • ADHIKARY, S. K., RUDŽIONIS, Ž., TUČKUTĖ, S., ASHISH, D. K. 2021. Effects of carbon nanotubes onexpanded glass and silica aerogel based lightweight concrete. Scientific Reports, 11(1).
  • ADHIKARY, S.K., KUMAR ASHISH, D., YMANTAS RUDŽIONIS, Z. 2020. Aerogel based thermalinsulating cementitious composites: A review. https://doi.org/10.1016/j.enbuild.2021.111058
  • ADHIKARY, S. K., RUDŽIONIS, Ž., VAIČIUKYNIENĖ, D. 2020. Development of flowable ultra-lightweightconcrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering, 31.
  • ADHIKARY, S. K, RUDŽIONIS, Ž. 2020. Influence of expanded glass aggregate size, aerogel and bindingmaterials volume on the properties of lightweight concrete. Materials Today: Proceedings, 32/4, 712-718,
  • CASINI, M. (2020). Insulation Materials for the Building Sector: A Review and Comparative Analysis. Encyclopedia of Renewable and Sustainable Materials, 121–132.
  • CHEN, F., ZHANG, Y., LIU, J., WANG, X., CHU, P. K., CHU, B., ZHANG, N. 2020. Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity. Construction and Building Materials, 249, 118728.
  • CUCE, E., CUCE, P. M., WOOD, C. J. RIFFAT, S. B. 2014. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy and Buildings, 77, 28–39.
  • DEMIRBOǦA, R., & GÜL, R. 2003. Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures. Energy and Buildings, 35(11), 1155–1159.
  • FICKLER, S., MILOW, B., RATKE, L., SCHNELLENBACH-HELD, M., WELSCH, T. (2015). Development of High-Performance Aerogel Concrete. Energy Procedia, 78, 406–411.
  • GAO, T., JELLE, B. P., GUSTAVSEN, A., JACOBSEN, S. 2014. Aerogel-incorporated concrete: An experimental study. Construction and Building Materials, 52, 130–136.
  • JIA, G., & LI, Z. (2021). Influence of the aerogel/expanded perlite composite as thermal insulation aggregate on the cement-based materials: Preparation, property, and microstructure. Construction and Building Materials, 273, 121728.
  • İLKENTAPAR, S., DURAK, U., ÖRKLEMEZ, E., ÖZUZUN, S., KARAHAN, O., ATIŞ C. D. 2023. Properties of fly ash-based lightweight-geopolymer mortars containing perlite aggregates: Mechanical, microstructure, and thermal conductivity coefficient. Construction and Building Materials, 362, 129717.
  • KHAMIDI, M. F., GLOVER, C., FARHAN, S. A., PUAD, N. H. A., NURUDDIN, M. F. 2014. Effect Of Silica Aerogel On The Thermal Conductivity Of Cement Paste For The Construction Of Concrete Buildings In Sustainable Cities. WIT Transactions on The Built Environment, 137, 665–674.
  • KOUKOUZAS, N. K., DUNHAM, A. C., SCOTT, P. W. 2013. Suitability of Greek perlite for industrial applications.
  • KRAMAR, D., & BINDIGANAVILE, V. (2011). Mechanical properties and size effects in lightweight mortars containing expanded perlite aggregate. Materials and Structures, 44(4), 735–748.
  • KUMAR, P., PASLA, D., JOTHI SARAVANAN, T. 2023. Self-compacting lightweight aggregate concrete and its properties: A review. Construction and Building Materials, 375, 130861.
  • MOUSA, A., MAHGOUB, M., HUSSEIN, M. 2018. Lightweight concrete in America: presence and challenges. Sustainable Production and Consumption, 15, 131–144.
  • RÓŻYCKA A., PICHÓR, W. 2016. Effect of perlite waste addition on the properties of autoclaved aerated concrete. https://doi.org/10.1016/j.conbuildmat.2016.05.019
  • ŚLOSARCZYK, A., VASHCHUK, A., KLAPISZEWSKI, Ł. 2022. Research Development in Silica Aerogel Incorporated Cementitious Composites - A Review. Polymers, 14(7), 1456.
  • SHAH, S. N., MO, K. H., YAP, S. P., RADWAN, M. K. H. 2021. Towards an energy efficient cement composite incorporating silica aerogel: A state of the art review. Journal of Building Engineering, 44, 103227.
  • TOPÇU, I. B., IŞIKDAǦ, B. 2008. Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1–3), 34–38.
  • ZHANG, Z., LI, B., WANG, Z., LIU, W., LIU, X. 2023. Development of reduced thermal conductivity ductile cement-based composite material by using silica aerogel and silane. Journal of Building Engineering, 65, 105698.
  • ZHAO, X., TANG, Y., XIE, W., LI, D., ZUO, X., YANG, H. 2023. 3D hierarchical porous expanded perlitebased composite phase-change material with superior latent heat storage capability for thermal management. Construction and Building Materials, 362, 129768.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69c2cc8c-7137-45d1-a0f1-fa43aa769a1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.