PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Experimental Investigation into Improving the Performance of Thermoelectric Generators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low-temperature heat sources have become increasingly popular in recent years, particularly for energy generation. The majority of thermal devices in the market (including devices using solar energy, geothermal energy, waste energy, and so on) transform heat into electricity indirectly, requiring mechanical work before producing power. Through the Seebeck effect, the technology that employs a thermoelectric generator (TEG) may directly transform heat energy into electricity. The TEG technology provides several advantages, including compactness, quietness, and the absence of moving components. TEGs have a low thermal and electrical efficiency, which is one of their main drawbacks. Therefore, the performance of a thermoelectric generator is improved by employing liquid evaporation heat transfer in this manuscript. The performance of the thermoelectric was examined experimentally and compared to the liquid evaporation mode under varied heat flux values and different modes of heat transfer in terms of free and forced convection with and without fins. The experimental results revealed that when compared to free convection without fins, adopting forced liquid evaporation convection would improve TEG voltage variation by 435.9%.
Rocznik
Strony
100--108
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
  • Department of Mechanical and Industrial Engineering, Applied Science Private University, P.O.Box 166, 11931, Amman, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
  • Department of Mechanical and Industrial Engineering, Applied Science Private University, P.O.Box 166, 11931, Amman, Jordan
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Mechanical Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
autor
  • Department of Civil Engineering, Applied Science Private University, P.O.Box 166, 11931, Amman, Jordan
Bibliografia
  • 1. Angeline A.A., Jayakumar J., Asirvatham L.G. 2017. Performance analysis of (Bi2Te3-PbTe) hybrid thermoelectric generator. International Journal of Power Electronics and Drive System, 8(2), 917-925.
  • 2. Araiz M., Casi Á., Catalán L., Martínez Á., Astrain D. 2020. Prospects of waste-heat recovery from a real industry using thermoelectric generators: Economic and power output analysis. Energy Convers Manag, 205, 112376.
  • 3. Araiz M., Casi Á., Catalán L., Aranguren P., Astrain D. 2021. Thermoelectric generator with passive biphasic thermosyphon heat exchanger for waste heat recovery: Design and Experimentation. Energies, 14, 5815.
  • 4. Aridi R., Faraj J., Ali S., Lemenand T., Khaled M. 2021. Thermoelectric power generators: State-of-the-art. Heat Recovery Method, and Challenges. Electricity, 2, 359–386.
  • 5. Atouei S.A., Ranjbar A.A., Rezania A. 2017. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials. Appl Energy, 208, 332–343.
  • 6. Bergman T.L., Incropera F.P., DeWitt D.P., Lavine A.S. 2011. Fundamentals of heat and mass transfer. John Wiley & Sons.
  • 7. Børset M.T., Wilhelmsen Ø., Kjelstrup S., Burheim O.S. 2017. Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling. Energy, 118, 865–875.
  • 8. Cao Q., Luan W., Wang T. 2018. Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery. Appl Therm Eng, 130, 1472–79.
  • 9. Chen J., Li K., Liu C., Li M., Lv Y., Jia L., et al. 2017. Enhanced efficiency of thermoelectric generator by optimizing mechanical and electrical structures. Energies, 10, 1329.
  • 10. Churchill S.W., Chu H.H.S. 1975. Correlating equations for laminar and turbulent free convection from a vertical plate. Int J Heat Mass Transf, 18, 1323–29.
  • 11. Dai D., Zhou Y., Liu J. 2011. Liquid metal based thermoelectric generation system for waste heat recovery. Renew Energy, 36, 3530–36.
  • 12. Dell R., Petralia M.T., Pokharel A., Unnthorsson R. 2019. Thermoelectric generator using passive cooling. Adv Thermoelectr Mater Energy Harvest Appl, 63.
  • 13. Elsheikh M.H., Shnawah D.A., Sabri M.F.M., Said S.B.M., Hassan M.H., Bashir M.B.A., et al. 2014. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew Sustain Energy Rev, 30, 337–355.
  • 14. Hadjistassou C., Kyriakides E., Georgiou J. 2013. Designing high efficiency segmented thermoelectric generators. Energy Convers Manag, 66, 165–172.
  • 15. Jaziri N., Boughamoura A., Müller J., Mezghani B., Tounsi F., Ismail M. 2020. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports, 6, 264–287.
  • 16. Meng F., Chen L., Feng Y., Xiong B. 2017. Thermoelectric generator for industrial gas phase waste heat recovery. Energy, 135, 83–90.
  • 17. Snyder G.J., Toberer E.S. 2011. Complex thermoelectric materials. Mater Sustain Energy a Collect Peer-Reviewed Res Rev Artic from Nat Publ Gr, 101–110.
  • 18. Omer S.A., Infield D.G. 1998. Design optimization of thermoelectric devices for solar power generation. Sol Energy Mater Sol Cells, 53, 67–82.
  • 19. Orr B., Akbarzadeh A., Mochizuki M., Singh R. 2016. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl Therm Eng, 101, 490–495.
  • 20. Polozine A., Sirotinskaya S., Schaeffer L. 2014. History of development of thermoelectric materials for electric power generation and criteria of their quality. Mater Res, 17, 1260–67.
  • 21. Shittu S., Li G., Zhao X., Ma X. 2019. Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect. Renew Energy, 130, 930–942.
  • 22. Rea J.E., Oshman C.J., Singh A., Alleman J., Parilla P.A., Hardin C.L., et al. 2018. Experimental demonstration of a dispatchable latent heat storage system with aluminum-silicon as a phase change material. Appl Energy, 230, 1218–29.
  • 23. Wang T., Luan W., Liu T., Tu S-T., Yan J. 2016. Performance enhancement of thermoelectric waste heat recovery system by using metal foam inserts. Energy Convers Manag, 124, 13–19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69c2c682-bd1c-4351-91f4-b81da9064937
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.