PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size of Non-Metallic Inclusions in High-Grade Medium Carbon Steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-metallic inclusions found in steel can affect its performance characteristics. Their impact depends not only on their quality, but also, among others, on their size and distribution in the steel volume. The literature mainly describes the results of tests on hard steels, particularly bearing steels. The amount of non-metallic inclusions found in steel with a medium carbon content melted under industrial conditions is rarely presented in the literature. The tested steel was melted in an electric arc furnace and then desulfurized and argon-refined. Seven typical industrial melts were analyzed, in which ca. 75% secondary raw materials were used. The amount of non-metallic inclusions was determined by optical and extraction methods. The test results are presented using stereometric indices. Inclusions are characterized by measuring ranges. The chemical composition of steel and contents of inclusions in every melts are presented. The results are shown in graphical form. The presented analysis of the tests results on the amount and size of non-metallic inclusions can be used to assess the operational strength and durability of steel melted and refined in the desulfurization and argon refining processes.
Rocznik
Strony
55--60
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Materials and Machines Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland
autor
  • University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Materials and Machines Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland
Bibliografia
  • [1] Kiessling, R. (1978). Non-metallic inclusions in steel. London: The Institute of Materials, UK.
  • [2] Moiseeva, L. A. & Moiseev, B.P. (2007). Composition, Structure and Sources of Exogenous Inclusions in Steel. Steel in Translation. 37(7), 607-613.
  • [3] Lipiński, T. & Wach, A. (2012). The Effect of the Production Process and Heat Processing Parameters on the Fatigue Strength of High-Grade Medium-Carbon Steel. Archives of Foundry Engineering. 12(2), 55-60.
  • [4] Smirnov, A.N., Efimova, V.G. & Kravchenko, A.V. (2014). Flotation of Nonmetallic Inclusions during Argon Injection into the Tundish of a Continuous_Casting Machine. Part 2. Steel in Translation. 44(1), 11-16.
  • [5] Lipiński, T. & Wach, A. (2010). The effect of the production process of medium-carbon steel on fatigue strength. Archives of Foundry Engineering. 10(2), 79-82.
  • [6] Opiela, M. & Grajcar, A. (2012). Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels. Archives of Foundry Engineering. 12(2), 129-134.
  • [7] Murakami, Y. (2002). Metal fatigue effects of small defects and nonmetallic inclusions. Oxford, Boston, Elsevier.
  • [8] Lipiński, T. & Wach, A. (2010). The Share of Non-Metallic Inclusions in High-Grade Steel for Machine Parts. Archives of Foundry Engineering. 10(4), 45-48.
  • [9] Pribulová, A. (2012), Influence of Blowing of Argon on the Cleanness of Steel. Archives of Foundry Engineering. 12(3), 91-94.
  • [10] Binczyk, F., Cwajna, J., Roskosz, S. & Gradoń, P. (2012). Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots. Archives of Foundry Engineering. 4(12), 5-10.
  • [11] Szajnar, J., Studnicki, A., Głownia, J., Kondracki, M., Suchoń, J. & Wróbel, T. (2013).Technological Aspects of Low-Alloyed Cast Steel Massive Casting Manufacturing. Archives of Foundry Engineering. 13 (4), 97-102.
  • [12] Asłanowicz, M., Ościłowski, A., Stachańczyk, J. & Wieliczko, P. (2007).Evaluating the effectiveness of heat resistant cast steel filtration from the results of structure examinations. Archives of Foundry Engineering. 7(1), 97-102.
  • [13] Senberger, J., Zadera, A. & Cech, J. (2011).Checking the metallurgy with the aid of inclusion analysis. Archives of Foundry Engineering. 11(1), 118-122.
  • [14] Saberifar, S., Mashreghi, A. & Novel, A. (2012). Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure. Metallurgical and Materials Transactions. 43(B), 603-608.
  • [15] Lis, T. (1999). Out furnace lay reducing dirt interpolations non - metallic processing. Metallurgist - Metallurgic Messages. 2, 54-61.
  • [16] Wypartowicz, J. & Podorska, D. (2006). Control of chemical composition of oxide-sulphide inclusions during deoxidation of steel with manganese, silicon and titanium. Metallurgist - Metallurgic Messages. 73(3), 91-96.
  • [17] Lis, T. (2002). Application of stereological procedures for quantitative assessment of dispersive oxide phase. Steel Research. 73(5).
  • [18] Fernandes, M., Pires, J., Cheung, N. & Garcia, A. (2003). Investigation of the chemical composition of nonmetallic inclusions utilizing ternary phase diagrams. Materials Characterization. 49, 437-443.
  • [19] Kocańda S. (1985), Fatigue cracking of metals. Warsaw: WNT.
  • [20] Wang, X.H., Jiang, M., Chen, B. & Li, H.B. (2012).Study on formation of non-metallic inclusions with lower melting temperatures in extra low oxygen special steels. Science China Technological Sciences. 55(7), 1863-1872.
  • [21] Bao, Y., Wang, M.& Jiang, W. (2012).A method for observing the three-dimensional morphologies of inclusions in steel. International Journal of Minerals, Metallurgy and Materials. 19(2), 111-115.
  • [22] Yang, Z.G., Zhang, J.M., Li, S.X., Li, G.Y., Wang, Q.Y., Hui, W.J. &Weng, Y.Q. (2006). On the critical inclusion size of high strength steels under ultra-high cycle fatigue. Materials Science and Engineering. A 427, 167-174.
  • [23] Murakami, Y., Kodama, S. & Konuma, S. (1989). Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: BASIC fatigue mechanizm and fatigue facture stress and the size and location of non-metallic inclusions. International Journal of Fatigue. 11(5), 291-298.
  • [24] Hashimoto, K., Fujimatsu, T., Tsunekage, N., Hiraoka, K., Kida, K., & Costa Santos E. (2011). Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions. Materials and Design. 32, 1605-1611.
  • [25] Alfredsson, B. & Olsson, E. (2012). Multi-axial fatigue initiation at inclusions and subsequent crack growth in a bainitic high strength roller bearing steel at uniaxial experiments. International Journal of Fatigue. 41, 130-139.
  • [26] Zhou, D.G., Fu, J., Chen, X.C. & Li, J. (2001).Study on oxygen content, inclusions and fatigue properties of bearing steels produced by different processes. International Journal of Minerals Metallurgy and Materials. 8(1), 25-27.
  • [27] Barrie, R.L., Gabbb, T.P., Telesman, J., Kantzos, P.T., Prescenzi, A., Biles, T. & Bonacuse, P.J. (2008). Effectiveness of shot peening in suppressing fatigue cracking at non-metallic inclusions in Udimet® 720. Materials Science and Engineering. A 474, 71-81.
  • [28] Park, J.S. & Park, J.H. (2014). Effect of Slag Composition on the Concentration of Al2O3 in the Inclusions in Si-Mnkilled Steel. Metallurgical And Materials Transactions B. 45B, 953-960.
  • [29] Gulyakov, V.S., Vusikhis, A.S. & Kudinov, D.Z. (2012). Nonmetallic Oxide Inclusions and Oxygen in the Vacuum Jet Refining of Steel. Steel in Translation. 42(11), 781-783.
  • [30] Srivastava, A., Ponson, L., Osovski, S., Bouchaud, E., Tvergaard, V. & Needleman, A. (2014). Effect of inclusion density on ductile fracture toughness and roughness. Journal of the Mechanics and Physics of Solids. 63, 62-79.
  • [31] Lipiński. T. & Wach. A. (2010). The influence of out furnace processing on the exploatinal propriety the middle carbon high quality cocstructional steel. Archives of Foundry Engineering. 1(10), 93-96.
  • [32] Spriestersbach, D., Grad, P. & Kerscher, E. (2014). Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. International Journal of Fatigue. 64, 114–120.
  • [33] Evans, M.H. and all (2014). Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation. Tribology International. 75. 87-97.
  • [34] Lipinski T. & Wach A. (2009). Non-metallic inclusions structure dimension in high quality steel with medium carbon contents. Archives of Foundry Engineering. 3(9), 75-78.
  • [35] Roiko, A., Hänninen, H. & Vuorikari, H. (2012). Anisotropic distribution of non-metallic inclusions in a forged steel roll and its influence on fatigue limit. International Journal of Fatigue. 41, 158-167.
  • [36] Shih, T.Y. & Araki, T. (1973). The effect of nonmetallic inclusion and microstructures on the fatigue crack initiation and propagation in high strength carbon steel. Transaction Journal Steel Institute Japanase. 1, 11-19.
  • [37] Genel, K. (2005). Estimation method for the fatigue limit of case hardened steels. Surface & Coatings Technology. 194, 91-95.
  • [38] Zhang, J.M., Zhang, J.F., Yang, Z.G., Li, G.Y., Yao, G., Li, S.X., Hui, W.J. & Weng, Y.Q. (2005). Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Materials Science and Engineering A. 394, 126-131.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69bf13de-b1dc-45a6-954a-8810f29ee423
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.