PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated strain gauge printing in a CFRP structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our approach is to integrate printed strain gauges into a structure of laminated carbon fibre reinforced plastics (CFRP). This can provide minimizing disturbances caused by an additional sensor weight. Another point is to reduce the occurrence of pre-damage, as a printed structure is integrated directly into the CFRP. Due to the printing, no additional masses are applied to the CFRP by cables. To this end, the boundary conditions for the print are first explained. Subsequently, the strain gages were printed. For this purpose, studies were carried out regarding the orientation of the strain gage printing direction, the influence of repeated printing, the overlapping during printing and the subsequent lamination in CFRP plates. The sensors are to be used in the structure of the CFRP plate in a machine tool.
Słowa kluczowe
Rocznik
Strony
74--81
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Institute of Manufacturing Technology and Quality Management (IFQ), Otto von Guericke University Magdeburg, Germany
  • Institute of Manufacturing Technology and Quality Management (IFQ), Otto von Guericke University Magdeburg, Germany
  • Institute of Machine Tools (IfW), University Stuttgart, Germany
Bibliografia
  • [1] SEIDEL G., BLESS M., WESSER H., 1959, Gedruckte Schaltungen – Technologie und Technik, Verlag Technik Berlin.
  • [2] KO S.H., PAN H., GRIGOROPOULOS C.P., LUSCOMBE C.K., FRÉCHET J.M.J., POULIKAKOS D., 2007, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles, Nanotechnology, 18, 345202.
  • [3] KO S. H., CHUNG J., PAN H., GRIGOROPOULOSA C. P., POULIKAKOSC D., 2007, Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing, Sensors and Actuators A, Physical, 134, 161–168.
  • [4] ALLEN N.J., WOOD D., ROSAMOND M.C., SIMS-WILLIAMS D.B., 2009, Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows, Procedia Chemistry, 1, 923–926.
  • [5] RAUSCH J., SALUN L., GRIEHEIMER S., IBIS M., WERTHSCHÜTZKY R., 2011, Printed Piezoresistive Strain Sensors for Monitoring of Light-Weight Structures, Sensor+Test Conferences, B1 – Piezoresistive Sensors, 216–221.
  • [6] IBIS M., 2015, Umformen von Aluminiumblechen mit aufgedruckter Elektronik am Beispiel von Dehnungsmess-streifen, Aachen Shaker, 96.
  • [7] CORREIA V., CAPARROS C., CASELLAS C., FRANCESCH L., ROCHA J.G., LANCEROS-MENDEZ S., 2013, Development of inkjet printed strain sensors, Smart Materials and Structures, 22, 105058.
  • [8] MAIWALD M., 2010, Untersuchungen zum Einfluss der Mikrostruktur auf die Eigenschaften aerosolgedruckter Sensorstrukturen, VDI Verlag, 4–10.
  • [9] MAIWALD M., WERNER C., ZOELLMER V., BUSSE M., 2010, INKtelligent printed strain gauges, Sensors and Actuators A, Physical, 162/2, 198–210.
  • [10] POLZINGER B., KECK J., MATIC V., EBERHARDT W., KÜCK H., 2016, Mit Inkjet und Aerosol Jet® gedruckte Sensoren auf 2D- und 3D-Substraten, Technisches Messen, 83, 139–146.
  • [11] PIQUÉ A., CHRISEY D.B., 2002, Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources, Academic Press, San Diego.
  • [12] SEIFERT T., SOWADE E., ROSCHER F., WIEMER M., GESSNER T., BAUMANN R.R., 2015, Additive Manufacturing Technologies Compared, Industrial & Engineering Chemistry Research, 54/2, 769–779.
  • [13] DUMSTORFF G., LANG W., 2016, Strain gauge printed on carbon weave for sensing in carbon fiber reinforced plastics, 2016 IEEE SENSORS, 1–3.
  • [14] ZHANG Y., ANDERSON N., BLAND S., NUTT St., JURSICH G., JOSHI S., 2017, All-printed strain sensors: Building blocks of the aircraft structural health monitoring system, Sensors and Actuators A: Physical, 253, 165–172.
  • [15] MÖHRING H.-C, 2017, Composites in Production Machines, Procedia CIRP, 66, 2–9.
  • [16] SUH, J.D., LEE, D.G., 2002, Composite Machine Tool Structures for High Speed Milling Machines, CIRP Annals – Manufacturing Technology, 51/1, 285–288.
  • [17] KROLL L., BLAU P., WABNER M., FRIESS U., EULITZ J., KLÄRNER M., 2011, Lightweight components for energy-efficient machine tools, CIRP Journal of Manufacturing Science and Technology, 4/2, 148–160.
  • [18] KULISEK V., JANOTA M., RUZICKA M., VRBA P., 2013 Application of fibre composites in a spindle ram design, Journal of Machine Engineering, 13/1, 7–23.
  • [19] MÖHRING H.-C., WIEDERKEHR P., LEOPOLD M, NGUYEN L.T., HENSE R., SIEBRECHT T., 2016, Simulation aided design of intelligent machine tool components, Journal of Machine Engineering, 16/3, 5–33.
  • [20] MÖHRING H.-C., WIEDERKEHR P., LEREZ C., SCHMITZ H., GOLDAU H., CZICHY C., 2016, Sensor Integrated CFRP Structures for Intelligent Fixtures, Procedia Technology, 26, 120–128.
  • [21] Silver Nano Particle Ink, 2012, Mitsubishi Nano Benefit Series NBSIJ-MU01, Mitsubishi Paper Mills Limited.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69ba4395-dc80-4048-a2d5-bef38bf6151a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.