PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizations in Dynamic Origin Technique for Efficient Lane Detection for Autonomous Vehicles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Driver assistance systems have started becoming a key differentiator in automotive space and all major automotive manufacturers have such systems with various capabilities and stages of implementation. The main building blocks of such systems are similar in nature and one of the major building blocks is road lane detection. Even though lane detection technology has been around for decades, it is still an ongoing area of research and there are still several improvements and optimizations that are possible. This paper offers an Optimized Dynamic Origin Technique (Optimized DOT) for lane detection. The proposed optimization algorithm of optimized DOT gives better results in performance and accuracy compared to other methods of lane detection. Analysis of proposed optimized DOT with various edge detection techniques, various threshold levels, various sample dataset and various lane detection methods were done and the results are discussed in this paper. The proposed optimized DOT lane detection average processing time increases by 9.21 % when compared to previous Dynamic Origin Technique (DOT) and 59.09 % compared to traditional hough transform.
Rocznik
Strony
407--413
Opis fizyczny
Bibliogr. 14 poz., fot., rys., tab., wykr.
Twórcy
autor
  • B S Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
autor
  • B S Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
Bibliografia
  • [1] Maya. P and Tharini. C, Lane Detection by Dynamic Origin Technique for Advanced Driver Assistance System. Intl Journal of Electronics and Telecommunications,67,4,589-594.2021. https://doi.org/10.24425/ijet.2021.137850
  • [2] P. Maya, C. Tharini, Performance Analysis of Lane Detection Algorithm using Partial Hough Transform. 21st International Arab Conference on Information Technology (ACIT'2020).2020-Egypt. https://doi.org/10.1109/ACIT50332.2020.9300083
  • [3] V. Gaikwad, S. Lokhande, Lane departure identification for advanced driver assistance. IEEE Transactions on Intelligent Transportation Systems.,16,2:910-918.2015 https://doi.org/10.1109/TITS.2014.2347400
  • [4] Chen Yingfo, Wong Pak Kin and Yang Zhi-Xin. A New Adaptive Region of Interest Extraction Method For Two-Lane Detection International Journal of Automotive Technology, 22, 6,1631-1649. 2021. https://doi.org/10.1007/s12239–021–0141–0
  • [5] Mittal. M, Verma. A and Kaur. B. An efficient edge detection approach to provide better edge connectivity for image analysis. IEEE Access, 7, 33240-33255.2019. https://doi.org/10.1109/ACCESS.2019.2902579
  • [6] Wei Yangzhe, Xu Miao. Detection of lane line based on Robert operator. Journal of Measurements in Engineering.9, Issue 3, 2021. http://doi.org/10.21595/jme.2021.22023
  • [7] He Y.-B, Zeng Y.-J, Chen H.-X, Xiao S.-X, Wang Y.-W and Huang S.-Y. Research on improved edge extraction algorithm of rectangular piece. International Journal of Modern Physics C, 29,01,1850007.2018. https://doi.org/10.1142/S0129183118500079
  • [8] Madrid. N and Hurtik. P Lane departure warning for mobile devices based on a fuzzy representation of images. Fuzzy Sets and Systems.291,144-159. 2016. https://doi.org/10.1016/j.fss.2015.09.009
  • [9] Zheng Fang, Luo Kang Sheng, Yan Song Chang-Wei, and Wang Mu-Chou. Improved Lane Line Detection Algorithm Based on Hough Transform. Pattern Recognition and Image Analysis.28,2,254-260.2018. https://doi.org/10.1134/S1054661818020049
  • [10] Wu P. C. Chang C and Lin C. H. Lane mark extraction for automobiles under complex conditions. Pattern Recognition. 47,2756-2767.2014. https://doi.org/10.1016/j.patcog.2014.02.004
  • [11] R. K. Satzoda and M. M. Trivedi. Drive analysis using vehicle dynamics and vision-based lane semantics.IEEE Transactions on Intelligent Transportation Systems.16,1,9-18.2014. https://doi.org/10.1109/TITS.2014.2331259
  • [12] J. Son, H. Yoo, S. Kim, K. Sohn. Real-time illumination invariant lane detection for lane departure warning system. Expert Systems with Applications.42,4,1816-1824.2015. https://doi.org/10.1016/j.eswa.2014.10.024
  • [13] Chen Q. Li, L, Li. M, Shaw S.-L and Nuchter A.A sensor fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios. IEEE Transactions on Vehicular Technology. 63,2,540-555.2013. https://doi.org/10.1109/TVT.2013.2281199
  • [14] Hu, J., Xiong, S., Zha, J. and Fu, C. Lane detection and trajectory tracking control of autonomous vehicle based on model predictive control. International Journal of Automotive Technology.21, 2, 285-295.2020. https://doi.org/10.1007/s12239-020-0027-6
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69b93dd4-6236-43f6-a1c3-0ab81e36a01c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.