PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Residual expansion deformation of high-speed railway steam-cured concrete: mechanism, modeling, and measurement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To clarify the volume deformation characteristics and residual expansion deformation formation mechanism of steam-cured concrete, the content of free water and air of fresh concrete before heating, and the hydration kinetics and mechanical characteristics evolution of concrete during the steam curing process were obtained by experiment and fitting. The residual expansion strain calculation model of steam-cured concrete was proposed and its accuracy was verified by a non-contact test. Results showed that: (i) the volume deformation characteristics of steam-cured concrete could be divided into two stages: rapid expansion in heating stage, then rapid shrinkage in constant temperature treating period and gentle shrinkage in cooling period; besides, an irrecoverable residual deformation was gained at the end of cooling period; (ii) the tested peak value of residual expansion strain of steam-cured concrete appeared at 0.5–1 h later than the fitting value, and the final tested residual expansion strain is lower than the fitting value; (iii) the higher the initial free water content and the lower the initial structural strength, the greater the final residual expansion deformation of steam-cured concrete. This paper aims to reveal the mechanism of residual expansion deformation and propose a method of restraining the deformation of high-speed railway steam-cured concrete. This paper could provide technical support for the production of steam-cured concrete prefabricated components and predict the residual expansion deformation.
Rocznik
Strony
17--38
Opis fizyczny
Bibliogr. 51 poz., fot., rys., wykr.
Twórcy
autor
  • School of Civil Engineering, Central South University, Changsha 410075, Hunan, People’s Republic of China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, Hunan, People’s Republic of China
  • School of Civil Engineering, Central South University, Changsha 410075, Hunan, People’s Republic of China
  • School of Civil Engineering, Central South University, Changsha 410075, Hunan, People’s Republic of China
Bibliografia
  • [1] Liu B, Jiang J, Shen S, Zhou F, Shi J, He Z. Effects of curing methods of concrete after steam curing on mechanical strength and permeability. Constr Build Mater. 2020;256: 119441. https://doi.org/10.1016/j.conbuildmat.2020.119441.
  • [2] Lee C, Lee S, Nguyen N. Modeling of compressive strength development of high-early-strength-concrete at different curing temperatures. Int J Concr Struct M. 2016;10(2):205–19. https://doi.org/10.1007/s40069-016-0147-6.
  • [3] Li M, Shi M, Wang Q. Research progress of steam-cured concrete. The Fifth National Symposium on Special Concrete Technology, Chengdu, 2014; 410–415. (in Chinese) https://d.wanfangdata.com.cn/conference/ChZDb25mZXJlbmNlTmV3UzIwMjEwMTI2Egc4NDA5MzUxGghoYW1idmhjdQ%3D%3D. Accessed 14 Apr 2015.
  • [4] Ma K, Long G, Xie Y. Deterioration mechanism of steam-cured concrete track slab. J China Railway Soc. 2018;40(8):116–21. https://doi.org/10.3969/j.issn.1001-8360.2018.08.015 (in Chinese).
  • [5] Xiang Y, Long G, Xie Y, Zheng K, He Z, Ma K, Zeng X, Wang M. Thermal damage and its controlling methods of high-speed railway steam-cured concrete: a review. Struct Concrete. 2020;22(S1):e1074–92. https://doi.org/10.1002/suco.202000433.
  • [6] Shi J, Liu B, Zhou F, Shen S, Dai J, Ji R, Tan J. Heat damage of concrete surfaces under steam curing and improvement measures. Constr Build Mater. 2020;252: 119104. https://doi.org/10.1016/j.conbuildmat.2020.119104.
  • [7] He Z. Heat damage effects of steam curing on concrete and corresponding improvement measures. Dissertation for the Doctoral Degree. Changsha: Central South University. 2012. (in Chinese) https://d.wanfangdata.com.cn/thesis/Y2426728.. Accessed 25 Feb 2014.
  • [8] Han X, Fu H, Li G, Tian L, Pan C, Chen C, Wang P. Volume deformation of steam-cured concrete with slag during and after steam curing. Materials. 2021;14:1647. https://doi.org/10.3390/ma14071647.
  • [9] Xiang Y, Xie Y, Li L. Volume deformation characteristics of concrete mixture during thermal curing process. Int Conf Mater Sci Manuf Eng (MSME 2018). 2019. https://doi.org/10.1051/matec conf/201925301008.
  • [10] Li L, Long G, Liu F, Shi Y, Ma C, Xie Y. Deformation behavior of concrete during steam curing. Mater Rep. 2019;33(4):1322–7. https://doi.org/10.11896/cldb.17120058.
  • [11] Gao P, Lu X, Jin S, Zhang H, Guo C. Using a new composite expansive material to decrease deformation and fracture of concrete. Mater Lett. 2008;62:106–8. https://doi.org/10.1016/j.matlet. 2007.04.091.
  • [12] Hu S, Wu J, Yang W, Lu L, He Y. Relationship between autogenous deformation and internal relative humidity of high-strength expansive concrete. J Wuhan Univ Technol. 2010;25(3):504–8. https://doi.org/10.1007/s11595-010-0032-0.
  • [13] Akcay B, Tasdemir MA. Optimisation of using lightweight aggregates in mitigating autogenous deformation of concrete. Constr Build Mater. 2009;23:353–63. https://doi.org/10.1016/j.conbuildmat.2007.11.015.
  • [14] Nguyen HV, Nakarai K, Okazaki A, Karasawa H, Tadokoro Y, Tsujino M. Applicability of a simplified estimation method to steam-cured expansive concrete. Cement Concrete Comp. 2019;95:217–27. https://doi.org/10.1016/j.cemconcomp.2018.11.002.
  • [15] He Z, Long G, Xie Y, Liu J. Expansive deformation behavior of steam-cured cementitious materials and corresponding control measurement. J Cent South Univ 2012;43(5):1947–1953. (In Chinese) https://d.wanfangdata.com.cn/periodical/zngydxxb201205052. Accessed 26 May 2012.
  • [16] Long G, Xiang Y, Xie Y, Shang T, Shi Y. Dynamic test method for deformation of cement-based materials during heat curing: China Paten, ZL 2019 1 0006532.9, 03–12–2019. (in Chinese) https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMTAxMDkSEENOMjAxOTEwMDA2NTMyLjkaCG91OXNiM2w3. Accessed 14 Aug 2020.
  • [17] GB 8076–2008. Concrete admixtures. Beijing: China Quality & Standards Publishing, 2009. (in Chinese) https://d.wanfangdata.com.cn/standard/ChRTdGFuZGFyZE5ld1MyMDIxMDgwMRIMR0IgODA3Ni0yMDA4Ggh6NG91dDY2cw%3D%3D. Accessed 31 Dec 2008.
  • [18] GB/T 14684–2011. Sand for building. Beijing: China Quality & Standards Publishing, 2011. (in Chinese) https://d.wanfangdata.com.cn/standard/ChRTdGFuZGFyZE5ld1MyMDIxMDcwNRIPR0IvVCAxNDY4NC0yMDExGghjdWR5NHFoMQ%3D%3D. Accessed 16 Jun 2011.
  • [19] GB/T 14685–2011. Pebble and crushed stone for construction. Beijing: China Quality & Standards Publishing, 2011. (in Chinese) https://d.wanfangdata.com.cn/standard/ChRTdGFuZG FyZE5ld1MyMDIxMDgwMRIPR0IvVCAxNDY4NS0yMDExGgh0Z3luaXF6ZA%3D%3D. Accessed 16 Jun 2011.
  • [20] GB/T 50080–2016. Standard for test method of performance on ordinary fresh concrete. Beijing: China Architecture & Building Press, 2017. (in Chinese) https://d.wanfangdata.com.cn/standard/ChRTdGFuZGFyZE5ld1MyMDIxMDQxNRIPR0IvVCA1MDA4MC0yMDE2Ggg5YXQxNXo4MQ%3D%3D. Accessem 18 Aug 2016.
  • [21] Erdem TK, Khayat KH, Yahia A. Correlating rheology of self-consolidating concrete to corresponding concrete-equivalent mortar. ACI Mater J. 2009;106(2):154–60. https://doi.org/10.14359/56462.
  • [22] GB/T 50081–2019. Standard for test methods of concrete physical and mechanical properties. Beijing: China Architecture &Building Press, 2019. (in Chinese) https://d.wanfangdata.com.cn/standard/ChRTdGFuZGFyZE5ld1MyMDIxMDQxNRIPR0IvVCA1 MDA4M S0yMD E5Ggh jcnY1 NWg1aA% 3D% 3D.Accessed 19 Jun 2019.
  • [23] Lydon FD, Balendran RV. Some observations on elastic properties of plain concrete. Cement Concrete Res. 1986;16(3):314–24. https://doi.org/10.1016/0008-8846(86)90106-7.
  • [24] Kim JJ, Jeon S, Kim J. Development of new device for measuring thermal stresses. Cement Concrete Res. 2002;32(10):1645–51. https://doi.org/10.1016/S0008-8846(02)00842-6.
  • [25] He J, Ma K, Long G, Xie Y. Mechanical properties evolution of concrete in steam-curing process. J Chinese Ceram Soc. 2018;46(11):1584–92. https://doi.org/10.14062/j.issn.0454-5648.2018.11.13 (in Chinese).
  • [26] Kada-Benameur H, Wirquin E, Duthoit B. Determination of apparent activation energy of concrete by isothermal calorimetry.Cement Concrete Res. 2000;30(2):301–5. https://doi.org/10.1016/S0008-8846(99)00250-1.
  • [27] Thomas JJ. The instantaneous apparent activation energy of cement hydration measured using a novel calorimetry-based method. J Am Ceram Soc. 2012;95(10):3291–6. https://doi.org/10.1111/j.1551-2916.2012.05396.x.
  • [28] Han F, Zhang Z, Wang D, Yan P. Hydration kinetics of composite binder containing slag at different temperatures. J Therm Anal Calorim. 2015;121:815–27. https://doi.org/10.1007/s10973-015-4631-z.
  • [29] ASTM, C 1074. Standard practice for estimating concrete strength by the maturity method. West Conshchocken: ASTM international; 2018.
  • [30] Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford Publishing; 1997.
  • [31] He J, Long G, Ma K, Xie Y, Ma C. Hydration heat evolution of Portland cement paste during unsteady steam curing process: modelling and optimization. Thermochimi Acta. 2020;694: 178784. https://doi.org/10.1016/j.tca.2020.178784.
  • [32] Mackenzie JK. The elastic constants of a solid containing spherical holes. Proc Phys Soc B. 1950;63:2–11. https://doi.org/10.1088/0370-1301/63/1/302.
  • [33] Bentz DP, Garboczi EJ, Quenard DA. Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass. Model Simul Mater Sci Eng. 1998;6(3):211–36. https://doi.org/10.1088/0965-0393/6/3/002.
  • [34] Hobbs DW. The dependence of the bulk modulus, Young’s modulus, shrinkage and the thermal expansion of concrete upon aggregate volume concentration. Concrete 1971;4(20):107–114. https://doi.org/10.1007/BF02473965.
  • [35] Lura P, Jensen OM, Breugel KV. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Cement Concrete Res. 2003;33(2):223–32. https://doi.org/10.1016/S0008-8846(02)00890-6.
  • [36] Fu Q, Xu W, Li D, Li N, Niu D, Zhang L, Guo B, Zhang Y. Dynamic compressive behaviour of hybrid basalt-polypropylene fibre-reinforced concrete under confining pressure: experimental characterisation and strength criterion. Cement Concrete Comp. 2021;118: 103954. https://doi.org/10.1016/j.cemconcomp.2021. 103954.
  • [37] Mehta PK, Monterio PJM. Concrete microstructure, properties, and materials. 3rd ed. New York: The McGraw-Hill Companies; 2006. https://doi.org/10.1036/0071462899.
  • [38] Jensen OM, Hansen PF. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement Concrete Res. 1999;29(4):567–75. https://doi.org/10.1016/S0008-8846(99)00021-6.
  • [39] Chu I, Kwon SH, Amin MN, Kim J. Estimation of temperature effects on autogenous shrinkage of concrete by a new prediction model. Constr Build Mater. 2012;35:171–82. https://doi.org/10.1016/j.conbuildmat.2012.03.005.
  • [40] Jiang Z, Sun Z, Wang P. Study on autogenous relative humidity change and autogenous shrinkage of cement pastes. J Build Mater. 2003;6(4):345–9. https://doi.org/10.3969/j.issn.1007-9629.2003.04.002 (in Chinese).
  • [41] Du M, Jin X, Ye H, Jin N, Tian Y. A coupled hygro-thermal model of early-age concrete based on micro-pore structure evolution. Constr Build Mater. 2016;111:689–98. https://doi.org/10.1016/j.conbuildmat.2015.10.187.
  • [42] Oh BH, Cha SW. Nonlinear analysis of temperature and moisture distributions in early-age concrete structures based on degree of hydration. ACI Mater J. 2003;100(5):361–70. https://doi.org/10.14359/12811.
  • [43] Park K. Prediction of temperature and moisture distributions in hardening concrete by using a hydration model. Archit Res.2012;14(4):153–61. https://doi.org/10.5659/AIKAR.2012.14.4.153.
  • [44] Norling MK. A model on self-desiccation in high performance concrete. In: self-desiccation and its importance in concrete technology, proceedings of the international research seminar. Sweden: Lund; 1997; p. 141–157.
  • [45] Wang X, Park K. Analysis of the compressive strength development of concrete considering the interactions between hydration and drying. Cement Concrete Res. 2017;102:1–15. https://doi.org/10.1016/j.cemconres.2017.08.010.
  • [46] Jensen OM, Hansen PF. Water-entrained cement-based materials I. Principles and theoretical background. Cement Concrete Res. 2001;31:647–54. https://doi.org/10.1016/S0008-8846(01)00463-X.
  • [47] Powers TC, Brownyard TL. Studies of the physical properties of hardened Portland cement paste. J Am Concr Inst. 1946;43(9):469–504. https://doi.org/10.14359/15301.
  • [48] Zhang J, Han Y, Gao Y. Integrative model of autogenous and drying shrinkages and its application in calculation of shrinkage-induced stresses in early-age concrete structures. J Hydraul Eng. 2012;43:13–24. https://doi.org/10.13243/j.cnki.slxb.2012.s1.002 (in Chinese).
  • [49] Zhang J, Hou D, Han Y. Micromechanical modeling on autogenous and drying shrinkages of concrete. Constr Build Mater. 2012;29:230–40. https://doi.org/10.1016/j.conbuildmat.2011.09.022.
  • [50] Paulini P. A weighing method for cement hydration. 9th International Congress on the Chemistry of Cement, National Council for Cement and Building Materials, New Delhi, 1992;4; 248–254.
  • [51] Zhang J, Chen H, Hou D. Development of shrinkage and internal moisture in cement paste, mortar and concrete at early age. J Build Mater. 2011;14(3):287–92. https://doi.org/10.3969/j.issn.1007-9629.2011.03.001 (in Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69b73d76-7b7b-42b0-b12c-d65d2591621f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.