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1. Introduction  
 

It is necessary to use all available information, 
historical, objective or subjective, when making 
decisions under uncertainty. This is especially true 
when the consequences of the decisions can lead to a 
collision of ships.  
Decisions made in the areas of safety and reliability 
have great impact on the humans and environment. 
Very often the information on which such decisions 
have to be based are only partially relevant, 
incomplete or even outdated and subjectively 
interpreted. 
Theory Bayesian methods are central to modelling 
behaviour under uncertainty. Analysing ship safety 
we maximize an objective function conditional on 
available information, and if more information 
becomes available we update decisions using Bayes 
rule. Bayesian methods apply this paradigm to the 
navigator as a decision maker, [16].  
 
2. Bayesian methodology in used for 
reliability evaluation 
  

Usually the reliability of a technical system is 
expressed mathematically in terms of probability 
distribution. The describing of its life time is done by 
failure time distribution which depend on at least one 
unknown parameter. Those  parameters must be 

estimated based on observed life tested data, [4], 
[11]. At shipping there are several random physical 
causes which separately or collectively may be  
responsible for the failure. Many of them changed at 
time so their numerical characteristics are not 
constant but are described by time dependent 
processes. It is why the parameters involved in 
failure should be treated as random variables. What’s 
more they  behave according to unknown probability 
distribution. 
Suppose that the conditional failure time distribution 
F(t|θ) depends on a random parameter θ whose 
probability distribution G(θ) is unknown. The 
unconditional failure time distribution is given by 
formula, [22] 
 
   FG(t)= ∫ F(t|θ) dG(θ).                                            (1) 
 
We have to consider the estimation of G in reliability 
models when a priori information about the 
parameter θ is specified in the form of an initial 
guess, G0 , of G.  
Utilizing the concepts of Dirichlet process priors on 
G, a Bayes estimate F�G  of FG  may be obtained 
based on k observed lifetimes from FG. Then an 
estimate Ĝk  of G is found from F�G  using a linear 
programming approach. For the Weibull failure time 
distribution F(t|θ) with random scale parameter θ , 
the effect of using the estimated prior Ĝk  in Bayes 
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Abstract  
 

In a Bayesian approach, there are two main sources of information about parameters of interest such as prior 
beliefs or the prior distribution of the parameter and the likelihood of observing the data given our expectations 
about the parameter. The prior distribution may be based on previous studies, literature reviews or expert 
opinions and indicates how we believe the parameter would behave if we had no data upon which to base our 
judgments.  In case where we have less data, the prior has greater influence.  The maximum likelihood estimate 
predominates only when we have a lot of data. The posterior distribution is the result of combining the prior 
distribution and the likelihood.  In the paper the examples of using Bayes approach to shipping operational 
reliability and safety is presented. 
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estimation of reliability is studied by Monte Carlo 
simulations. 
Bayesian analysis considers population parameters to 
be random, not fixed   
Life data information, or subjective judgment, is 
used to determine a prior distribution for these 
population parameters. Knowing of the parameters is 
necessary when making decisions under uncertainty 
especially if the consequences of the decisions can 
have a significant risks to environment , life  or 
implicate great financial louses, as it is in sea 
transport. 
Statistical analysis generally restricting the 
information used in an analysis to that obtained from 
a current set of clearly relevant data. Prior 
knowledge is used to make the choice of a 
population model which "fit" to the data. Chosen 
model is later checked against the data for 
reasonableness, [19].   
At Bayes approach at the first step we use old 
information, or subjective judgments, to construct a 
prior distribution model for these parameters.  
Such model expresses initial assessment of how 
likely various values of the unknown parameters are. 
We then use Bayes formula to revise this starting 
assessment, deriving the posterior distribution model 
for the population model parameters. Parameter 
estimates are calculated directly from the posterior 
distribution.  Since the unknown parameters are 
considered random, not fixed then credibility 
intervals are legitimate probability statements about 
these parameters.   
Parametric Bayesian prior models are chosen 
because of their flexibility and mathematical 
convenience. The conjugate priors are a natural and 
popular choice of Bayesian prior distribution models. 
  
2.1. Bayesian approach  
  

The essential for Bayes model is Bayes Theorem, 
[10]. We start from notations partition of a Sample 
Space.  
A partition of a sample space Ω  is a collection of 
mutually disjoint and collectively exhaustive events 
Hi.  
That is Hi ∩ Hj = ∅ whenever i ≠ j, and ∪i Hi = Ω, 
where the union includes all of the sets Hi.  
 
Law of Total Probability.  
 
Let {Hi; i=1,2,…} be a countable infinite partition 

of Ω, then for any event D 
 

   
∑=
i

ii HPHDPDP )()|()(                                   (2)   

              

where sum is taken over i = 1, 2, ... .  
The total probability of D has been expressed as a 
sum of probabilities of disjoint sets. 
 
Bayes Theorem.  

Let Hi form a finite partition of Ω, then for any 
element Hj  of partition  
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If we know the probabilities P(Hi) of all of the 
partition sets, and we know all of the conditional 
probabilities P(D|Hi), then we know the probabilities 
of each of the events involved in the law of total 
probability, formula (2), than we can evaluate P(D). 

Thus we can find any of the "reverse" conditional 
probabilities P(Hj|D) . 

 
2.2. Bayesian hypothesis testing 
 

Lets assume that we have two complimentary 
hypotheses, H0 and H1. Letting D stand for the 
observed data, Bayes theorem then becomes: 

 

   )
1

|()
1

()
0

|()
0

(

)
0

|()
0

(
)|

0
(

HDPHPHDPHP

HDPHP
DHP

⋅+⋅

⋅
=   ,     (5) 

 

and 
 

   )|()()|()(

)|()(
)|(

1100

11
1 HDPHPHDPHP

HDPHP
DHP

⋅+⋅
⋅= .          (6) 

 

The P(H0|D) and P(H1|D) are posterior probabilities, 
the probability that the H0 is true given. The p(H0), 
p(H1) are prior probabilities, the probability that the 
H0 or the alternative is true prior to considering the 
new data.  The P(D|H0) and P(D|H1) are the 
likelihoods, the probabilities of the data given one or 
the other hypothesis. 
That is,  
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In classical hypothesis testing, we considers only 
P(D|H0), it means the probability of obtaining 
sample data as or more discrepant with null 
hypothesis than are those on hand, that is, for the 
obtained significance level, p, and if that p is small 
enough, we reject the null hypothesis and asserts the 
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alternative hypothesis. In classical hypothesis testing 
we do not estimate the probability that the null 
hypothesis is true.  Using Bayesian methodology 
such estimation is done and if that probability is 
sufficiently small  the null hypothesis is rejected, in 
favor of the alternative hypothesis. The level of small 
which is sufficiently small depends on an informed 
consideration of the relative seriousness of making 
one sort of error (rejecting H0)  versus another sort of 
error (retaining H0). 
 
Example 1 
Suppose that we are interested in testing the two 
hypotheses about the  acceptable distance to another 
ship according to a collision risk. H0:  µ = 4 nautical 
miles   versus  H1:  µ = 4,5  nautical miles.  If we 
consider  the two hypotheses equally likely, and 
dismiss all other possible values of µ, then the prior 
probability of the null is 0,5 and the prior probability 
of the alternative is also 0,5. 
Let assume that we obtain a sample from the 
population of navigators  and the acceptable distance  
is normally distributed with a standard deviation of 
0,3, so the standard error of the mean is 0,3/10 = 
0,03.  The obtained sample mean is 4,12.   

Computing for each hypothesis 
σ

µ i
i

m
z

−
=  we have 

for H0 the z = 0,1 and for H1 z = -0,31667.   
 
The likelihood P(D|H0) is obtained by finding the 
height of the standard normal curve at z and dividing 
by 2 (since there are two hypotheses),  
 
   P(D|H0) = 0,673096. 
 
 In the same way we obtain the likelihood  
 
   P(D|H1) = 0,326904.   
 
The  
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so, the posterior probabilities formulas (5), (6) are: 
 

   6731,0)|( 0 =DHP , and 3269,0)|( 1 =DHP . 
 
The ratio, formula (7), of prior odds was 1 but the 
posterior odds ratio equals  
 

   
059,2

3269,0

6731,0 =
 

and  it is the same as the likelihood ratio . 

That is, after gathering the data we know that H1 is 
more than 2 times more likely than is H∅. 

Multiplying the prior odds ratio by the likelihood 
ratio gives us the posterior odds.  If we assume that 
the prior probabilities are equal we will make the 
mistake. 
Bayes formula provides the mathematical tool that 
combines prior knowledge with current data to 
produce a posterior distribution.   
We can transform the formula, in terms of 
probability density function models formula (1), then 
it takes the form:   
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where )|( λxf  is the likelihood function (called 
conjugate distributions), for the observed data x 
given the unknown parameter λ, )(λh  is the prior 
distribution model for λ (the conjugate prior) and 

)|( xh λ  is the posterior distribution model for λ 
given that the data x have been observed.   
We called )|( λxf   the conjugate distributions and 

)(λh  the conjugate prior if )|( xh λ  and )(λh were 
belong to the same probability distribution family. 
If sampling have an exponentially distributed 
population then the Gamma model is a conjugate 
prior for the failure rate λ. 
The gamma, exponential conjugate pair is used in 
Bayesian system reliability applications, in many 
cases. 
   
2.3. Bayesian methodology for reliability 
model    

We can take into consideration different types of 
uncertainty sources in shipping analysis like, 
[14][18][3]:  
• physical uncertainty or inherent variability, 

quantified by a probability distribution estimated 
from observed data, ship reliability, human error;  

• statistical uncertainty, which refers to the 
uncertainty in the statistical distribution 
parameters of the random variables;  

• modeling uncertainty, which includes uncertainty 
in both probabilistic and system analysis models,  

 
Operational reliability 
  
Ongoing monitoring is required to remain vigilant to 
navigation situation changes that may lead to 
increase of collision risk. Vessels at sea may be  in 
the position of being the stand on vessel or the give 
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way vessel. At no time should any vessel actually 
navigate its way into a collision. The rule is that the 
ship on the left must give way, [21], [23]. 
In efforts to quantify online changes in ships 
movements and their positions, we face data issues 
falling in two categories observation errors caused by 
lack of information according action planning by 
navigator and insufficient data because there is no 
information about navigators subjective level of risk 
acceptance. Hierarchical Bayesian analysis, provide 
the flexibility to deal with such complex data and a 
mechanism for the integration of multiple sources of 
error. 
The area of observation can take any shape and take 
different values of the collision probabilities. It is 
important for decision making process  to use the 
random map of potential collision hazards [6], [11]. 
 
Modeling collision risk area 
 
With respect to ship-to-ship collisions, the three 
different collision scenarios should be examined 
separately namely, [28]:  
• Head-on collision, in which two vessels collide 

on a straight leg of a fairway as a result of two-
way traffic on the fairway;  

• Collision, in which two vessels moving in an 
opposite direction on the same fairway collide on 
a turn of the fairway as a result of one of the 
vessels neglecting or missing the turn (error of 
omission) and thus coming into contact with the 
other vessel;  

• Crossing collision, in which two vessels using 
different fairways collide at the fairway crossing.  

 
The shape and dimensions of dynamic constrains of 
the ship domain, as a collision risk area, depends on 
assumed safety conditions. 
In paper we assume that it is ellipse E(xi, yi) whose 
parameters depend on the motion vector of the ship. 
In this area is determined two-dimensional cut 
Gaussian probability measure fi(x,y) which specifies 
the location of the ship si, by formulas 
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where  
 
• ],[ yx=w , 

• di – distance to the ship si, 
• ),( ii yxEχ - indicator function of ellipse ),,( ii yxE  

• φi – angle between axis OX and bearing of an 
ship si from the own ship, 

• µ  is the mean vector, 

)],sin(),cos([ iiiii dd ϕϕ=µ  

• Σ is the covariance matrix, for the  Gaussian 
density. 

 
The general measure of all collision risk areas could 
be defined as,(8), if we take the same importance to 
each ship, 
  

    
 
The assessment of the navigational situation is the 
subjective due to the navigator’s relative risk attitude 
[29], [15]. Thus, we define the acceptable level of 
hazard as related to sufficient time (making and 
doing decisions) to avoid potential hazard situation 
between the own and target ships dependent on 
navigator’s attitude. 
If not all ships have the same level of importance, 
according to collision hazard,  we can use the more 
general model such that: 
• I – the set of own ships, I={1,2,3,…, i},  

• J – the set of target ships, },...,3,2,1{ j=J , 

where j is the number of target ships on the 
considered area, 

• R – the set of danger type,  },...,3,2,1{ r=R   

• +ℜ∈≡ r
iaria ),(  is the number describing the i-th 

own ship’s safety time needing according to 
collision hazard of r-th type, 

• +ℜ∈≡ r
jbrjb ),(  is the number describing the j-th 

target ship’s “danger supply” time of the  
collision hazard of r-th type, 

• the }1,0{: →× RJµ  is describing the relation 

between the j-th target ships on the area and the r-

th type of danger, 1),( =≡ r
jrj µµ  when j-th 

target ship is a risk  source of r-th type, and the 

other hand ;0=r
jµ  

• [ ]
RJ

r
jM

×
= µ – the matrix of r-th type of 

threatening objects from j-th target ship, 
• )( jΨ  - is discreet random variable 

describing the time for “acceptable level of hazards” 
(r-th type) and for target ship j with distribution 
function (i.e. the random variable describing the 
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sufficient time to avoid the potential hazard situation 
of r-th type with target ship j): 
 

   
,),,()),,()(( ,rl
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• +ℜ→×× RJI:λ - measure the effects of r-th 

type danger from j-th target ship for i-th own 

ship, where +ℜ∈≡ r
jirji ,),,( λλ  is the number of 

the cost of effect, , …, 

• +ℜ→× JIg :  - significance of the effects, where 
+ℜ∈≡ j

igjig ),(  is the number describing the the 

strength of interaction between i-th own ship and 
j-th target ship, 

• +ℜ→×× RJIx :  - the measure, where 
+ℜ∈≡ r

jixrjix ,),,(
 
is describing the time to the r-

th type risk, when the j-th target ship is 
considered, for i-th own ship. 

An estimator which minimizes the Bayes risk  over 
all estimators, [6],   
 

   dsssRr )(),()( ππ ∫ ∂=∂  
 
is called a generalized Bayes estimator with respect 
to a weighting function .  
 
2.4. Bayesian estimation of the mean of a 
normally distributed variable with known 
variance 

Let assume that the general form of a mixture 
distribution is , [20], [9] 
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where kp  is the probability that an observation will 
come from the kth component (the so-called kth 
mixing proportion), c is the number of components, 

( )kk xf θ;  is the distribution of the kth component, 

and kθ  is the vector of parameters describing the kth.  

Note that the kp  must be non negative  and sum to 1. 
If we assume that sample of n data centre points of 
ships domains have arisen independently from a 
normal distribution with unit variance and unknown 
mean θ  then the likelihood function for θ  is, [7], 
[12], [31], [32] 
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and nxi∑=θ̂ , the sample mean.  
The maximum likelihood estimator of the variance 

2σ of a normal distribution ( )2,σµN  is 
 

   ( )∑ − 21 xxn i . 
 
However this estimator is biased, [34].  It is common 
to use the unbiased estimator  
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We believe a single data point x comes from a 
normal distribution with unknown mean θ  and 
known variance α .  Suppose our prior distribution 
for θ  is ( )00 ,~ αθθ N , with 0θ  and 0α  known.  
Then 
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If we consider the following reparameterisation.   
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This is a normal distribution ( )11,αθN .  This means 
that the normal prior distribution has been updated to 
yield a normal posterior distribution.  Given a normal 
prior for the mean, and data arising from a normal 
distribution we can obtain the posterior simply by 
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computing the updated parameters.  Moreover the 
updating of the parameters is not chaotic.   
When there are n data points, with the same situation 
as above, the posterior is again normal, now with 
updated parameter values  
 

   ( ) 1

01 1 −+= ααα n  
 
and 
 

   ( )ααθαθ nx+= 0011  
 
We wish to fit a normal mixture distribution 
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where kµ  is the mean of the ith component and kσ  
is the standard deviation of the kth component.  
Suppose for the moment that we knew the values of 
the kµ  and the kσ .  Then, for a given value of x, the 
probability that it arose from the kth class would be  
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From this, we could then estimate the values of the 

kp , kµ  and kσ  as  
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where the summations are over the n points in the 
data set.   
This set of equations leads to an obvious iterative 
procedure.  We pick starting values for the kµ  and 

kσ , plug them into formula (9) to yield estimates 

( )xkP |ˆ  and use it to obtain estimates kp̂  ,  kµ̂  ,  

kσ̂  and then iterate back using the updated estimates 

of kµ  and σk , cycling round until some 
convergence criterion has been satisfied. 
  
 
 
                          

3. The hazards map  

There is a concept of the risk map based on two 
dimensional probabilities measures, [15], [24]. 
It is introduced for the navigational situation (i.e., 
number and location of ships and their vectors 
courses) which dynamically changes in time. We 
take into account the velocity vectors of all units in 
the relevant area. 
Map of the hazards of collisions is closely linked to 
navigation situation (ie, number and location of ships 
and their vectors courses). 
In this article we use two-dimensional multimodal 
density distributions which is a mixture of two-
dimensional normal density functions. 
Because of lack of information of ship course 
changes for each ship a fuzzy define collision 
domains should be described, [33], [24]. 
The kernel will be determined by a set of probability 
measures as two dimensional normal density 
functions (where (m1,m2) is equal to the position of a 
ship ),  
As the set centered for which the probability of 
finding the vessel is equal to 1-alpha. Where alpha is 
approved, an acceptable level of error arising from 
uncertain or incomplete information. In any case it is 
a function of S-type due to the diameters of the core 
domain. 
Membership function depends on the degree of 
conformity of an individual's position at time t + dt 
calculated on the basis of information about an 
individual's position at the time t and the parameters 
of its motion vector. 
The database will complement the area for which the 
probability of finding the unit will be beta (alpha> 
beta) 
Risk map allows for prioritization of threats of 
conflict for individuals on supervised sea area. 
Adopted domain kernel fuzzy shape (elliptical, 
circular, polygonal) determines the analytic form of 
membership function. Membership function is 
dependent on the argument which is the length of the 
radius vector of a point. The verification of 
navigational situation at intervals of time dt, the 
length of which depends on the dynamics of 
navigational situation and the risk indices calculated 
in the previous step. 
This requires the use Baeys approach where the 
distribution of positions of individuals at time t + dt 
and thus the risk map is determined a priori at the 
time that then at time t + dt verified a posterior on the 
basis of current information about the position and 
motion vectors of individuals.  
Risk map allows for prioritization of threats of 
conflict for individuals on supervised waters. 
Adopted domain kernel fuzzy shape (elliptical, 
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circular, polygonal) determines the analytic form of 
membership function.  
According to Rasch Model we can classified the 
ships into separate classes.  
The Rasch Model (RM), due to the work of Rost, [1], 
[25], contains both, latent trait and latent class 
variables. We assume that the RM does not hold for 
the entire population of target ships, but does so 
within subpopulations of individuals which are not 
known before hand. The probability that the 
navigator at ship i-th react at collision situation with 
j-th correctly is: 
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where  
θi - is the i-th ship’s ability,  
φi - indicates which latent group of the ship i belongs 

to, 
βφji - denotes the situation j’s difficulty which depends 

on group variable φ.  
 

Suppose there are G classes, number of classes is not 
less than 2, the unconditional probability that the 
ship i react at collision situation j correctly is:  
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where  
• πg - probability that the ship belongs to class g,  
• Σg πg =1, and  0< π g <1, 
• Σjβj=0 or E(θ)=0 for all classes.  

 
The classification for each group is related to the 
preliminary assessment based on the type of unit and 
its technical and operating parameters. And then 
updated based on a factor of unpredictability of 
individual behaviour  
The naive Bayes classification is a relatively simple 
method for classifying ships, according to collision 
hazard,  based on the false assumption that all of the 
units, in this case ships in the analyzed area, are 
independent of each other.  Even though this 
assumption is false, this model is done to achieve 
fundamental understanding concerning the 
effectiveness of the naive Bayes as compared to 
other methods, and to find a way of improving upon 
the performance of this classifier.     
There have been many studies which have used the 
naive Bayesian classification method, and it was first 
used in a published paper in 1966 for a medical study 
on computer-assisted diagnosis.  Hand and Yu in 

2001 reviewed past uses of the naive Bayesian 
method for classification.  Using theoretical and real 
data situations, they showed that the naive Bayes is 
not an excessively inaccurate method because of its 
false assumption that all of the variables, which in 
my project are occurrences of words, are 
independent.   
The Naive Bayesian Classifiers could help as to 
answer the question which classification is the most 
probable for this new instance if we have a look at 
the training data. 
 
Example 2 
An instance of a ship could be (course, size, change 
of course, type of domain). An Naive Bayes 
System could calculate values for the following two 
classifications “collision hazard” and “no collision 
hazard” according to the available training data.  
Using formulas (2), (3) we obtain 
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where  
• X is a set of instances (a1,a2,…,an) 
• V is a set of classifications vj, j=1,2 
 
Naive Bayes assumption leads to the following 
algorithm: 
• for each target value vj estimate P(vj) 
• for each attribute value ai of each attribute a 

estimate P(ai | vj ) 
• )|()(max j

xa
i

Vvj
j vaPvPv

i
∏=
∈∈

. 

 
3.1. Hierarchical Bayes model  
  

In a Bayesian approach, our two main sources of 
information about parameters of interest (θ) are our 
prior beliefs or the prior distribution of the parameter 
(Pr[θ]) and the likelihood of observing the data given 
our expectations about the parameter (Pr[y|θ]), [2], 
[27].  
 
   Pr[θ|y] = Pr[y| θ] * Pr[ θ], 
 
Choice of the prior distribution is critical as it 
essentially indicates how we believe the parameter 
would behave if we had not sufficient information to 
make the decision. The posterior distribution is a 
combination of two probabilities.   
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In a hierarchical or mixed Bayesian model we 
specify a distribution for how risk is distributed 
across a group of individuals and also varies across 
higher levels of organization by specifying an 
additional set of parameters.  It can help account for 
irregular groupings and autocorrelation. 
In describing the likelihood, the risk for each area is 
transformed to a log scale (making relationships 
additive rather than multiplicative) and is set equal to 
an intercept term and two random effects, one non-
spatial the other spatial, [13], [2]. 
The spatially structured component is described as a 
conditional autoregressive Gaussian process where 
the conditional distribution of each parameter is 
normal.  We can use the matrix of neighbors that 
defines the neighborhood structure.  The non-spatial 
component of the model is defined at normally 
distributed.   
We can use Bayesian network to assess the risk 
indices for individual units, and calculate the safety 
level of conflict in a given sea area, [27]. A Bayesian 
network is an acyclic directed graph consisting of  
encoding a domain's variables (nodes) , the 
probabilistic influences among them (arcs) and  the 
joint probability distribution over these variables. 
 

3.2. Bayes and MCMC 
 

The Bayesian approach implies the calculation of 
complicated multidimensional integrals. A  class of 
numerical procedures, such as Markov Chain Monte 
Carlo (MCMC) techniques, were revolutionalized the 
Bayesian approach because the integral is 
approximated by Monte-Carlo sampling, [26]. There 
are two major classes of MCMC techniques: Gibbs 
sampling and Metropolis-Hastings sampling, [30].  
 
Simulation approach 

The classification for each group is related to the 
preliminary assessment based on the type of unit and 
its technical and operating parameters. And then 
updated based on a factor of unpredictability of 
individual behavior.  
 As for how to approach the information is 
represented by a multidimensional time series, 
prediction by the naive method. 
 
General algorithm 
 

1. The calculation of collision risk index to 
individuals at time t.  

2. Determination of the risk index. The 
weighted average risk indices with the 
weights assigned based on relative increases 
in risk indices (see the time series). 

3. The classification of the situation to the 
appropriate category of supervision 
(appointment time step). 

4. The calculation of risk indices for the next 
collision time t + dt, the distribution of 
apriori.  

5. Verification at the time t + dt hazard indices 
based on updated information about the 
navigational situation. 

6. Determination of membership function 
parameters for each unit based on the 
compatibility factor priori and aposteriori 
distribution, location of the individual. 

7. Go to Step 2 or alarm about the threat. 

 
4. Conclusion  
  

The essence of The Empirical Bayes approach is to 
use two types of information that must be taken into 
account for estimating the safety of ships at analyzed 
area. The first type of information is found in 
navigational situation and weather conditions. The 
second type of information is derived from the 
history of collision occurrences. 
The Bayesian procedures is used to obtain as 
accurate a posterior distribution as possible, and then 
use this distribution to calculate risk measures or 
failure rate (probability characteristic) estimates with 
credibility intervals. 
Advantages of using Bayes Methodology: 
• uses prior information, 
• less new testing may be needed to confirm a 

desired probability characteristic at a given 
confidence,  

• confidence intervals are intervals for the (random) 
probability characteristic , 

Disadvantages of using Bayes Methodology: 
• prior information may not be accurate so choice 

of prior may not be correct,  
• not acceptance validity of prior data or expert 

judgments,  
• different approaches can give different results. 
The navigational conditions are  relevant for 
collision scenarios. The presented method is able to 
take into account arbitrary navigational conditions. 
The ship traffic is divided into traffic streams which 
help as to group ships by type according to collision 
hazard. There is possible to use presented methods 
and models for calculating the ship safety in different 
navigational situation. 
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