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Abstract

In a Bayesian approach, there are two main sowfcagormation about parameters of interest suclpras
beliefs or the prior distribution of the parameded the likelihood of observing the data given expectations
about the parameter. The prior distribution maybbsed on previous studies, literature reviews @egx
opinions and indicates how we believe the parameterdd behave if we had no data upon which to lmase
judgments. In case where we have less data, ibieh@ars greater influence. The maximum likelih@stimate
predominates only when we have a lot of data. Todsepior distribution is the result of combiningetprior
distribution and thdikelihood. In the paper the examples of using &agpproach to shipping operational
reliability and safety is presented.

1. Introduction estimated based on observed life tested data, [4],
, , _ . [11]. At shipping there are several random physical
It. is necessary .to use all'av.aulable mformatl.on,Causes which separately or collectively may be
historical, objective or subjective, when making \egnonsiple for the failure. Many of them changed a
decisions under uncertainty. This is especialle tru yjne o their numerical characteristics are not
when the consequences of the decistaslead to @ congtant but are described by time dependent
collision of ships. __ processes. It is why the parameters involved in
Decisions made in the areas of safety and religbili t5jlure should be treated as random variables. What
have great impact on the humans and environmeniygre they behave according to unknown probability
Very often the information on which such decisions gistripution.
have to be based are only partially relevant,gyppose that the conditional failure time distritut
interpreted. _ probability distribution Gf) is unknown. The
Theory Bayesian methods are central to modellingnconditional failure time distribution is given by
behaviour under uncertainty. Analysing ship safetyformuyla, [22]
we maximize an objective function conditional on
available information, and if more information £ t)=[ F(t|0) dG(). (1)
becomes available we update decisions using Bayes
rule. Bayesian methods apply this paradigm to théyye have to consider the estimation of G in religbil

navigator as a decision maker, [16]. models when a priori information about the
) . parameter9 is specified in the form of an initial

2. Bayesian methodology in used for guess, G, of G.

reliability evaluation Utilizing the concepts of Dirichlet process prians

G, a Bayes estimate/s of iz may be obtained
based on k observed lifetimes frong. FThen an
estimateG, of G is found fronFJg using a linear
programming approach. For the Weibull failure time
istribution F(#) with random scale parameter,
e effect of using the estimated prié¢ in Bayes

Usually the reliability of a technical system is
expressed mathematically in terms of probability
distribution. The describing of its life time ism® by
failure time distribution which depend on at leasé
unknown parameter. Those parameters must b
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estimation of reliability is studied by Monte Carlo
simulations.

where sum is taken over 1, 2, ... .
The total probability oD has been expressed as a

Bayesian analysis considers population parameters tsum of probabilities of disjoint sets.

be random, not fixed

Life data information, or subjective judgment, is
used to determine a prior distribution for these
population parameters. Knowing of the parameters i

necessary when making decisions under uncertaint

Bayes Theorem.

4_et H; form a finite partition ofQ2, then for any

ﬁlememHj of partition

especially if the consequences of the decisions can

have a significant risks to environment , life or

implicate great financial louses, as it is in sea

transport.

Statistical analysis generally restricting th
information used in an analysis to that obtainednfr
a current set of clearly relevant data. Prior
knowledge
population model which "fit" to the data. Chosen
model is later
reasonableness, [19].

e

is used to make the choice of a

checked against the data for

P(D|H ;)P(H;
P(H; D)= ( 'P(’S)( i)

()

If we know the probabilities P{) of all of the
partition sets, and we know all of the conditional
probabilities PD|H;), then we know the probabilities
of each of the events involved in the law of total
probability, formula (2), than we can evaluat®p(

Thus we can find any of the "reverse" conditional

At Bayes approach at the first step we use oldprobabilities PKi|D) .

information, or subjective judgments, to constract
prior distribution model for these parameters.
Such model expressdsitial assessment of how

2.2. Bayesian hypothesis testing

likely various values of the unknown parameters areL€ts assume that we have two complimentary
We then use Bayes formula to revise this startingyPotheses, fand H. Letling D stand for the
assessment, deriving the posterior distributionehod °observed data, Bayes theorem then becomes:

for the population model parameters. Paramete
estimates are calculated directly from the posterio
distribution.
considered random, not fixed then credibility
intervals are legitimate probability statementsuibo
these parameters.
Parametric Bayesian prior
because of their flexibilty and mathematical
convenience. The conjugate priors are a natural an
popular choice of Bayesian prior distribution madel

2.1. Bayesian approach

The essential for Bayes model is Bayes Theorem

[10]. We start from notations partition of a Sample
Space.

A partition of a sample spac® is a collection of
mutually disjoint and collectively exhaustive ewent
Hi.

That isH; n H; = O whenevei # j, andJ; H; = Q,
where the union includes all of the skEis

Law of Total Probability.

Let {H;; i=1,2,...} be a countable infinite partition

of Q, then for any everid

P(D)=XP(D[H;)P(H;) ()
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Since the unknown parameters are P(H,ID)=

r

models are chosen

P(Hy) [P(D | H) + P(H,) [P(D | H,)
and
d P(H. D) = P(H,) (P(D [H,) ©)

P(H,) (P(D | Hy)+ P(H,)[P(D [H,)

The P(Ho|D) andP(H,|D) are posterior probabilities,
the probability that the His true given. The(Hy),
p(Hy) are prior probabilities, the probability that the
Hy or the alternative is true prior to considering th
new data. TheP(D|H,) and P(D|H;) are the
likelihoods, the probabilities of the data giverear
the other hypothesis.

That is,

P(H,|D) _ P(H,) P(D[H,) (7)
P(H,ID) P(H,) P(D[H,)

In classical hypothesis testing, we considers only
P(D|Hy), it means the probability of obtaining
sample data as or more discrepant with null
hypothesis than are those on hand, that is, for the
obtained significance level, p, and if that p isaim
enough, we reject the null hypothesis and asdagts t
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alternative hypothesis. In classical hypothesitrigs
we do not estimate the probability that the null
hypothesis is true.
such estimation is done and if that probability is
sufficiently small the null hypothesis is rejectéal
favor of the alternative hypothesis. The levelrog#
which is sufficiently small depends on an informed

That is, after gathering the data we know thatisH
more than 2 times more likely than ig H

Using Bayesian methodologypmyltiplying the prior odds ratio by the likelinood

ratio gives us the posterior odds. If we assunag¢ th
the prior probabilities are equal we will make the
mistake.

Bayes formula provides the mathematical tool that

consideration of the relative seriousness of making.ompines prior knowledge with current data to

one sort of error (rejectinggH versus another sort of
error (retaining .

Example 1

produce a posterior distribution.

We can transform the formula, in terms of
probability density function models formula (1)eth

it takes the form:

Suppose that we are interested in testing the two

hypotheses about the acceptable distance to anothe

ship according to a collision risk,Hu = 4 nautical
miles versus H u = 4,5 nautical miles If we
consider the two hypotheses equally likely, and
dismiss all other possible valuesgfthen the prior
probability of the null is 0,5 and the prior proiiap

of the alternative is also 0,5.

F(x[A)h(4)

h(A|%) ==
[ f(x]A)h(A)dA
0

where f(x|A) is the likelihood function (called
conjugate distributions), for the observed data x

Let assume that we obtain a sample from thegiven the unknown parametar h(A) is the prior

population of navigators and the acceptable distan
is normally distributed with a standard deviatidh o

0,3, so the standard error of the mean is 0,3/10 =

0,03. The obtained sample mean is 4,12.

Computing for each hypothesk =MA we have
o

for Hy thez= 0,1 and for Hz=-0,31667.
The likelihood P(D|H,) is obtained by finding the
height of the standard normal curvezand dividing
by 2 (since there are two hypotheses),

P(D|H) = 0,673096.
In the same way we obtain the likelihood

P(D|H,) = 0,326904.
The

P(D)=P(Ho)xP(D|H,) +P(H,)xP(D|H,)
= 05[D184135+ 05[D,089429-0136782

so, the posterior probabilities formulas (5), (8:a
P(H,|D)=0,6731, and P(H, | D) = 0,3269.

The ratio, formula (7), of prior odds was 1 but the
posterior odds ratio equals

06731_

0,3269
and it is the same as the likelihood ratio .

2,059

229

distribution model ford (the conjugate prior) and
h(A|x) is the posterior distribution model fdr

given that the data x have been observed.

We called f(x]|A ) the conjugate distributions and
h(A) the conjugate prior ih(A|x Jand h(A )were
belong to the same probabiliistribution family.

If sampling have an exponentially distributed
population then the Gamma model is a conjugate
prior for the failure rate.

The gamma, exponential conjugate pair is used in
Bayesian system reliability applications, in many
cases.

2.3. Bayesian methodology for reliability
model

We can take into consideration different types of

uncertainty sources in shipping analysis like,
[14][18][3]:
e physical uncertainty or inherent variability,

quantified by a probability distribution estimated
from observed data, ship reliability, human error;

statistical uncertainty, which refers to the
uncertainty in the statistical distribution

parameters of the random variables;

modeling uncertainty, which includes uncertainty
in both probabilistic and system analysis models,

Operational reliability

Ongoing monitoring is required to remain vigilaat t
navigation situation changes that may lead to
increase of collision risk. Vessels at sea mayibe
the position of being the stand on vessel or the gi
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way vessel. At no time should any vessel actuallys
navigate its way into a collision. The rule is thia¢
ship on the left must give way, [21], [23].

In efforts to quantify online changes in ships *
movements and their positions, we face data issues

d — distance to the ship s
Xew .y~ Indicator function of ellipseE(x;, y;),

@i — angle between axis OX and bearing of an
ship s from the own ship,

falling in two categories observation errors caused ° H IS the mean vector,
lack of information according action planning by  p, =[d, cos,),d, sin(@,)],
navigator and insufficient data because there is NQ ¥ is the covariance matrix. for the Gaussian

information about navigators subjective level akri
acceptance. Hierarchical Bayesian analysis, provide

the flexibility to deal with such complex data aad Tne general measure of all collision risk areaddou
mechanism for the integration of multiple sourcés o0 pe defined as (8), if we take the same importance t

density.

error. _ each ship,
The area of observation can take any shape and take
different values of the collision probabilities. ik n

) . . 1
important for decision making process to use the g(x¥) =Z;-fi(x,}’:.
random map of potential collision hazards [6], [11] i=1
The assessment of the navigational situation is the
subjective due to the navigator’s relative risktadie

With respect to ship-to-ship collisions, the three[29], [15]. Thus, we define the acceptable level of
different collision scenarios should be examinedhazard as related to sufficient time (making and
separately namely, [28]: doing decisions) to avoid potential hazard situatio

« Head-on collision, in which two vessels collide P€tween the own and target ships dependent on

on a straight leg of a fairway as a result of two-Navigator's attitude. _
way traffic on the fairway: If not all ships have the same level of importance,

Modeling collision risk area

« Collision, in which two vessels moving in an according to collision hazard, we can use the more

opposite direction on the same fairway collide on
a turn of the fairway as a result of one of the®
vessels neglecting or missing the turn (error ofe
omission) and thus coming into contact with the
other vessel;

e Crossing collision, in which two vessels using
different fairways collide at the fairway crossing.
The shape and dimensions of dynamic constrains of

the ship domain, as a collision risk area, dep@&mds
assumed safety conditions.

In paper we assume that it is ellipse Ef®) whose
parameters depend on the motion vector of the ship.
In this area is determined two-dimensional cut
Gaussian probability measufiéx,y) which specifies

the location of the ship, 9y formulas .
1
p(w) = —— 55 O
27T|2|1/2

exp[ ~Lw-n) = (w-n) } K

— p(W)XE(Xiin)
fi (X1 y) ) -”E(Xi,yi) p(W)dW

general model such that:

| — the set of own ship$={1,2,3,..., i},

J —the set of target shipd, = {123,...,]},

wherej is the number of target ships on the
considered area,

R —the set of danger typeR = {1,23,...,r}
a(i,r)=a 00" is the number describing ti¢h
own ship’s safety time needing according to
collision hazard of-th type,

b(j,r)=bf 00" is the number describing the j-th
target ship’s “danger supply” time of the
collision hazard of r-th type,

the p:Jx R0 -{01} is describing the relation
between théth target ships on the area and the
th type of danger, u(j,r)=x; =1 when j-th
target ship is a risk source oth type, and the
other handy; =0;

M :[,uj']JxR— the matrix of r-th type of

threatening objects frojrth target ship,
W(j) - is discreet random variable

where describing the time for “acceptable level of hagard
(r-th type) and for target ship with distribution
c w=[xyY], function (i.e. the random variable describing the
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sufficient time to avoid the potential hazard sitoa  and 6, is the vector of parameters describing kte

of r-th type with target ship): Note that thep, must be non negative and sum to 1.
If we assume that sample ofdata centre points of
P(W() =¢(.l,r)=p(j.lr) =9, ships domains have arisen independently from a
normal distribution with unit variance and unknown
where mean & then the likelihood function foé is, [7],

[12], [31], [32]

idl,joJ,1=223....a(,r),r0R,

_ 1
. . 18]x,,...,x,) = (2 “ex;{——z xi—ez}
oog eg.lr)z0and g O X p(j.lr) =% @1 )=(en) 2 ( )
j0J rOR j0J rOR J
00 pi.lr)=0 andé?zz-)g/n,the §ample mgan. .
i0l rOR The maximum likelihood estimator of the variance

o?of a normal distributiorN(,u, 02) is
e A:IxJxR - O'- measure the effects ofth

type danger fromj-th target ship fori-th own l/nz(x. _2)2.
ship, whereA(i, j,r) = A, 00" is the number of

the cost of effect € 1, ... However this estimator is biased, [34]. It is coomm
to use the unbiased estimator

 g:1xJ - O -significance of the effects, where

9@, j)=g/ 00" is the number describing the the  1/(n-1)x(x - x)* .

strength of interaction betweeith own ship and

j-th target ship, We believe a single data poixt comes from a
normal distribution with unknown mear¥ and
known variance@ . Suppose our prior distribution
for 8 is 8~N(6,,a,), with 8, and @, known.
th type risk, when thej-th target ship is Then
considered, for-th own ship.

e X:IxJxR-0O" - the measure, where
x(i,j,r)=x ;00" is describing the time to ttre

| o | p(61x)= p(x|6)p(6)
An estimator which minimizes the Bayes risk over 1
all estimators, [6], :exp{—zez(]/ao +1a)+6(6,/a, + x/a)}

r,,(0) =[R(s,0)7(s)ds
If we consider the following reparameterisation.

is called a generalized Bayes estimator with rdspec

to a weighting functiome(s). a, = (ao‘l + a‘l)_l
2.4. Bayesian estimation of the mean of a and
normally distributed variable with known
variance 6,=a,(6,/a, +x/a)
Let assume that the general form of a mixture h
distribution is , [20], [9] then
f(x)=5p,f,(x6) p(61%)=—— exr{—i(e—el)z/al}
=R 2m, 2

where p, is the probability that an observation will This is a normal distributioN(6,,0,). This means

come from thekth component (the so-callekth  that the normal prior distribution has been updated
mixing proportion),c is the number of components, yield a normal posterior distribution. Given a mai

f(x.6,) is the distribution of theth component, prior for the mean, and data arising from a normal
distribution we can obtain the posterisimply by
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computing the updated parameters. Moreover the3. The hazards map
updating of the parameters is mtaotic

When there ara data points, with the same situation
as above, the posterior is again normal, now with
updated parameter values

There is a concept of the risk map based on two

dimensional probabilities measures, [15], [24].

It is introduced for the navigational situati¢he.,

number and location of ships and their vectors
-1 courses)which dynamically changes in time. We

a. = (]’/a° *n a) take into) accountythe velogity vec?ors of all uriits

the relevant area.

and Map of the hazards of collisions is closely linked
navigation situation (ie, number and location dpsh
6,=a,(6,/a, +xn/a) and their vectors courses).
In this article we uséwo-dimensional multimodal
We wish to fit a normal mixture distribution density distributions which is a mixture of two-
dimensional normal density functions.
-3 . Because of lack of information of ship course
(0= 5 pyf, b .01 P

changes for each ship a fuzzy define collision
domains should be described, [33], [24].
where L, is the mean of th#h component ands, The kernel will be determined by a set of probapili
is the standard deviation of thh component. Measures as two dimensional normal density
Suppose for the moment that we knew the values ofunctions (where (mm) is equal to the position of a
the 4, and theo, . Then, for a given value of the ship),

. . As the set centered for which the probability of
probability that it arose from tHeh class would be finding the vessel is equal to 1-alpha. Where aigha

f (X_ o ) approved, an acceptable level of error arising from
P(k | x) = P X A O) (9) uncertain or incomplete information. In any casis it
f(X) a function of S-type due to the diameters of thes co
domain.
From this, we could then estimate the values of theMembership function depends on the degree of
p., 4, andog, as conformity of an individual's position at time tdt

calculated on the basis of information about an
1 individual's position at the time t and the paraeret
P = HZlP(k %) of its motion vector.
. The database will complement the area for which the
) probability of finding the unit will be beta (alpha

=3 Plk X )x beta)
np, i= Risk map allows for prioritization of threats of
conflict for individuals on supervised sea area.
. 1 n o Adopted domain kernel fuzzy shape (elliptical,
Oy =lel P(k | % )(Xi ‘ﬂk) circular, polygonal) determines the analytic forfn o
P membership function. Membership function is
dependent on the argument which is the lengthef th
radius vector of a point. The verification of
da’Fa set. . _ _ . _havigational situation at intervals of time dt, the
This set of equat!ons Iea.ds to an obvious |terat|vqength of which depends on the dynamics of
procedure. We pick starting values for the and  npayigational situation and the risk indices calteda
O,, plug them into formula (9) to yield estimates in the previous step.
A . . . A A This requires the use Baeys approach where the
Ff('"X) and use it to obtain estimate , /Ay distiibution of positions of ividunls at timestdt
0, and then iterate back using the updated estimategng thus the risk map is determined a priori at the
of 4 and 0., cycling round untii some time that then attime t + dt verified a posteoarthe
Convergence Criterion has been Satisfied_ basis of current information about the pOSition and
motion vectors of individuals.
Risk map allows for prioritization of threats of
conflict for individuals on supervised waters.
Adopted domain kernel fuzzy shape (elliptical,

A

H =

where the summations are over theoints in the
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circular, polygonal) determines the analytic forfn 0 2001 reviewed past uses of the naive Bayesian

membership function. method for classification. Using theoretical aedlr
According to Rasch Model we can classified thedata situations, they showed that the naive Bayes i
ships into separate classes. not an excessively inaccurate method because of its

The Rasch Model (RM), due to the work of Rost, [1] false assumption that all of the variables, which i
[25], contains both, latent trait and latent classmy project are occurrences of words, are
variables. We assume that the RM does not hold foindependent.

the entire population of target ships, but does solhe Naive Bayesian Classifiers could help as to
within subpopulations of individuals which are not answer the question which classification is the tmos
known before hand. The probability that the probable for this new instance if we have a look at
navigator at ship-th react at collision situation with the training data.

j-th correctly is:

Example 2
exp(Hi _:Bm) An instance of a ship could bequrse, size, change
P(X, :1|9i,¢.,.3j):1+exp(9 3. ) of course, type of domain An Naive Bayes
i aj

System could calculate values for the following two
classifications “collision hazard” and “no collisio
hazard” according to the available training data.
Using formulas (2), (3) we obtain

where
6, - is thei-th ship’s ability,
i - indicates which latent group of the shipelongs

to
' e . = P(v, |a,,a,...
B,ii - denotes the situatigrs difficulty which depends v rvrjjglvx v, la,a,..2,)
on group variable. P(a,,a,...a, |v,)P(v,)
=ma
Suppose there are G classes, number of classes is n Y P@,8,.4,)

less than 2, the unconditional probability that the =max[]P(a |v;)P(v)
shipi react at collision situationcorrectly is: e

s expo-5,) where .
p(xij =1|6 ”8(4]_): Y, ' ar « Xis a set of instances;(a,...,a)
o "1+ exp(&i ~ B, ) * Vis aset of classifications,y=1,2
where Naive Bayes assumption leads to the following
* g - probability that the ship belongs to class g, algorithm:
*Xymg =1, and O<r4<1,  for each target valug estimateP(v)
* Zij=0 or E)=0 for all classes. « for each attribute valug af each attribute a

estimateP(a | v )
The classification for each group is related to the. v=maxP(v;) [TP(a |v;).
preliminary assessment based on the type of udit an vy aix
its technical and operating parameters. And then
updated based on a factor of unpredictability of
individual behaviour
The naive Bayes classification is a relatively denp In a Bayesian approach, our two main sources of
method for classifying ships, according to collisio information about parameters of intere&} ére our
hazard, based on the false assumption that #tieof prior beliefs or the prior distribution of the perater
units, in this case ships in the analyzed area, ar€Pr[0]) and the likelihood of observing the data given
independent of each other. Even though thisour expectations about the parameter (FPly[2],
assumption is false, this model is done to achievg27].
fundamental  understanding  concerning  the
effectiveness of the naive Bayes as compared to Pr[d|y] = Prly| 4] * Pr[ 4],
other methods, and to find a way of improving upon
the performance of this classifier. Choice of the prior distribution is critical as it
There have been many studies which have used thessentially indicates how we believe the parameter
naive Bayesian classification method, and it west fi  would behave if we had nsufficientinformation to

used in a published paper in 1966 for a medicalystu make the decision. The posterior distribution is a
on computer-assisted diagnosis. Hand and Yu ircombination of two probabilities.

3.1. Hierarchical Bayes model
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In a hierarchical or mixed Bayesian model we 3. The classification of the situation to the

specify a distribution for how risk is distributed appropriate  category of  supervision
across a group of individuals and also varies &cros (appointment time step).

higher levels of organization by specifying an 4. The calculation of risk indices for the next
additional set of parameters. It can help accéamt collision time t + dt, the distribution of
irregular groupings and autocorrelation. apriori.

In describing the likelihood, the risk for eachaie 5. Verification at the time t + dt hazard indices
transformed to a log scale (making relationships based on updated information about the
additive rather than multiplicative) and is set &lqo navigational situation.

an intercept term and two random effects, one non- 6. Determination of membership function
spatial the other spatial, [13], [2]. parameters for each unit based on the
The spatially structured component is described as compatibility factor priori and aposteriori
conditional autoregressive Gaussian process where distribution, location of the individual.

the conditional distribution of each parameter is 7. Go to Step 2 or alarm about the threat.
normal. We can use the matrix of neighbors that

defines the neighborhood structure. The non-spatiag conclusion

component of the model is defined at normally

distributed. The essence of The Empirical Bayes approach is to
We can use Bayesian network to assess the riskse two types of information that must be taken int
indices for individual units, and calculate theespf —account for estimating the safety of ships at arealy
level of conflict in a given sea area, [27]. A Baim  area. The first type of information is found in
network is an acyclic directed graph consisting ofnavigational situation and weather conditions. The

encoding a domain's variables (nodes) , thesecond type of information is derived from the

probabilistic influences among them (arcs) and thehistory of collision occurrences.

joint probability distribution over these variahles The Bayesian procedures is used to obtain as
accurate a posterior distribution as possible,thad

3.2. Bayes and MCMC use this distribution to calculate risk measures or

The Bayesian approach implies the calculation offailure_r_atg (probability characteristic) estimavath
complicated multidimensional integrals. A class of credibility intervals.
numerical procedures, such as Markov Chain MonteAdvantages of using Bayes Methodology
Carlo (MCMC) techniques, were revolutionalized the * Uses prior information,
Bayesian approach because the integral is less new testing may be needed to confirm a
approximated by Monte-Carlo sampling, [26]. There desired probability characteristic at a given
are two major classes of MCMC techniques: Gibbs confidence,
sampling and Metropolis-Hastings sampling, [30]. ¢ confidence intervals are intervals for the (random)
probability characteristic ,

Simulation approach Disadvantages of using Bayes Methodology:

« prior information may not be accurate so choice
The classification for each group is related to the of prior may not be correct,
preliminary assessment based on the type of udit ane not acceptance validity of prior data or expert
its technical and operating parameters. And then judgments,
updated based on a factor of unpredictability of. different approaches can give different results.
individual behavior. The navigational conditions are  relevant for
As for how to approach the information is collision scenarios. The presented method is able t
represented by a multidimensional time seriesitake into account arbitrary navigational conditions

prediction by the naive method. The ship traffic is divided into traffic streams ia
_ help as to group ships by type according to coltisi
General algorithm hazard. There is possible to use presented methods

. o o and models for calculating the ship safety in défe
1. The calculation of collision risk index to navigational situation.

individuals at time t.
2. Determination of the risk index. The References
weighted average risk indices with the
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