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Abstract. In this work we study ODE limit problems for reaction-diffusion equations
for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial
conditions and exponent parameters. Moreover, we prove continuity of the flow and weak
upper semicontinuity of a family of global attractors for reaction-diffusion equations with
spatially variable exponents when the exponents go to 2 in L (£2) and the diffusion coefficients
go to infinity.
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1. INTRODUCTION

Reaction-Diffusion systems for which the flow is essentially determined by an ordinary
differential equation have been studied by many researchers and they often appear
as shadow systems, see for example [2,4,5,8,12,14,15,22,23,26]. It is a well-known
fact that many models of chemical, biological and ecological problems involve
reaction-diffusion systems. When variable exponents are included these models often
appear in applications in electrorheological fluids [9,10,19-21] and image processing
[6,11].

In [24-26] the authors investigated in which way the exponent parameter p(z)
affects the dynamic of PDEs involving the p(x)-Laplacian. In [24,25] the limit problem
was also a PDE and in [26] the limit problem was an ODE.

In this paper we study a problem of the form

ps(w)—Qvus) + |us Ps(w)_2u8 = B(us(t)), t> 0,

(1.1)

Us (O) = UQs,

{ 9us (1) — div(Dy|Vu,
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under homogeneous Neumann boundary conditions, ugs € H = L*(Q), Q C R"
(n > 1) is a smooth bounded domain, B : H — H is a globally Lipschitz map with
Lipschitz constant L > 0, D, € [1,00), ps(-) € C(), p; := min,cq ps(z) > 2, and
there exists a constant a > 2 such that pJ := max_ . ps(z) < a, for all s € N. We
assume that Dy — oo and p(-) — 2 in L*°(Q2) as s — oo.

The aim of this work is to study the asymptotic behavior as s — co. We prove
continuity of the flows and weak upper semicontinuity of the family of global attrac-
tors {As}sen as s goes to infinity for the problem (1.1) with respect to the couple
of parameters (Ds,ps), where ps is the variable exponent and D; is the diffusion
coefficient.

Problem (1.1) has a strong solution us, i.e., us € C([0,T]; H) is absolutely con-
tinuous in any compact subinterval of (0,T), us(t) € D(A®) for ae. t € (0,T),

and
dug

dt

() + A®(us(t)) = B(us(t)) for a.e. t € (0,7T),

where

A®(ug) = —div(Dg|Vus ps(m)fzvus) + |us

and problem (1.1) has a global attractor A, (see [26]). The authors in [26] had
considered the problem (1.1) with ps(-) = p > 2 in L>°(Q2) and proved continuity of
the flows and upper semicontinuity of the family of global attractors. In this work we
want to give one step more and reach the linear case, i.e., consider ps(-) — 2 in L>=(£2).
It is worth mentioning that we were not able to obtain upper semicontinuity of the
family of global attractors, but only a weak upper semicontinuity of the family of
global attractors {A;}sen as s goes to infinity for the problem (1.1), weak in the sense
that we developed an algorithm which said to us how to control the gaps between two
consecutive exponent functions for a given dy (see condition (H2) in Section 4) in order
to obtain A C Os,(Ax), for s large enough, where A, will be the global attractor
of the limit problem. To obtain upper semicontinuity of the family of global attractors
it would be necessary to find general conditions on the exponents independent of
d9. We developed in this work a new technique by using arguments with Hausdorff
semi-distances, numerical series and limit processes (see Lemma 4.5, Lemma 4.6 and
Theorem 4.7).

Considering ps(-) — 2 in L>®(£2) and large diffusion, a fast redistribution process
of the solution occurs having homogenization, any spatial variation of the solution
is reduced to zero; i.e.; the only relevant parameter at the limit of the dynamics of
the problem becomes the time. In other words, the limit problem will be the ODE
(3.2). Going directly to 2 when varying the exponents is technically difficult or even
impossible because of the lack of a uniform estimate of the solutions as the parameter
of the problem converges to its limit, for this reason we will use what was done in
[26] and from that limit problem with a constant exponent p > 2 we go to 2. For this
reason we will consider a family (in p) of ODE’s reaching the same limit problem (3.2)
when p goes to 2. So, we will consider the following hypothesis

Ds (:xv)72uS

(H) There exists ¢ > 0 such that if ps € Fe,(2) := {g;[|g — 2|l L= () < €0}, then py is
a constant function.
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The paper is organized as follows. In Section 2 we collect some definitions and
results on semigroup theory. In Section 3 we prove a uniform estimate for the solutions
of nonlinear ODEs and we prove continuity of the solutions with respect to initial
conditions and exponent parameters. In Section 4 we prove that the solutions {u}
of the PDE (1.1) converge for s — oo to the solution u of the limit problem (3.2)
which is an ODE, and, after that, we obtain a weak upper semicontinuity of the global
attractors for the problem (1.1). As a consequence we obtain that the attractors of
problem (1.1) are included in a neighborhood of an interval.

2. PRELIMINARIES

For convenience to the reader we recall some definitions from Ladyzhenskaya [17] on
(nonlinear) semigroup theory.

Definition 2.1. Let (X,d) be a complete metric space. A semigroup is a family
{T'(t): X — X,t > 0} of single-valued continuous operators 7'(¢) : X — X depending
on a parameter t € RT and satisfying the semigroup property:

T(t1)T(t2)(x) = T(t1 + t2)(x), for all t1,t2 € R and € X;

and T(0) = I,.

Definition 2.2. Let A and M be subsets of X. We say that A attracts M or M is
attracted to A by the semigroup {T'(¢) };>¢ if for every € > 0 there exists a t1 (e, M) € R
such that

Tt)M C O [(A) :={zx € X;d(z,A) < €}
for all t > t1(e, M).
Definition 2.3. A is called a global B-attractor if A attracts each bounded set in X.

Definition 2.4. A semigroup is called bounded dissipative or B-dissipative if it has
a bounded global B-attractor.

Definition 2.5. A set A C X is called invariant (relative to semigroup {7'(¢)}) if
T(t)A= A, for all t € RT.

Definition 2.6. A semigroup {T'(¢)};>0 belongs to the class K if for each ¢ > 0
the operator T'(¢) is compact, i.e., for any bounded set B C X its image T (t)B is
precompact.

Theorem 2.7. Let {T(t) : X — X,t > 0} be a semigroup of class K. If it is
B-dissipative, then {T'(t) : X — X,t > 0} has a minimal closed global B-attractor M,
which is compact and invariant.

Definition 2.8. A point 2 € X is said to be an equilibrium (or fixed point) of the
semigroup {T'(t)}i>o0 if = T(t)z, for all ¢t > 0.
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Definition 2.9. A complete trajectory ~(x) of the point x is the curve x(t),
—00 < t < +00, satisfying the following conditions: z(t) € X for all t € R, z(0) =z,
T(1)(x(t)) =z(t+7) for all t € R and 7 € RT.

For more details on (nonlinear) semigroup theory see [13,17,18,28].
Now we rewrite some definitions and results about monotone (or order-preserving)
semigroups as particular cases of the results in [3] (see also [1,7]).

Definition 2.10. A semigroup {7T'(¢t) : X — X,t > 0} is said to be monotone if there
exists an order relation “ <” in X such that, if xg < yo, then T'(¢t)xo < T'(t)yo, for all
t>0.

We assume that the order is compatible with the topology (see [3, p. 303]). The
next result provides information on the structure of the global B-attractor with upper
and lower asymptotically stable equilibria.

Theorem 2.11 ([3]). Let {T'(¢t) : X — X,t > 0} be a B-dissipative monotone
semigroup of class IC and A its associated mazximal compact invariant global B-attractor.
Then, there exist equilibria x.,y* € A such that:

(1) 2. <y* and A C [z.,y*] = {z € X2, <z < y*},

(2) x. (resp. y*) is minimal (resp. mazimal) in the sense that any other fized points
are contained in the interval [x.,y*],

(3) z. is globally attracting from below, that is, for all v € X with v < x,, we have
that limy—, 1 oo T'(t)v = x4,

(4) y* is globally attracting from above, that is, for all v € X with y* < v, we have

*

that limy—, oo T'(t)v = y*.

3. THE FAMILY OF ODES AND ITS LIMIT PROBLEM

Now consider the following family (in p) of ODEs

{up(t) + up ()P~ 2y () = f(up(t), t>0, 51)

up(0) = ugp € R,

with f: R — R a globally Lipschitz map with Lipschitz constant L > 0 and p € (2, 3]
a constant.

By Lemma 3.2 and Theorem 3.1 in [22] problem (3.1) has a unique global solution u,,
and defines a B-dissipative semigroup of class C which has a maximal compact invariant
global B—attractor M, given as the union of all bounded complete trajectories in R.

Now, we intend to study the sensitivity of problem (3.1) when the constant exponent
p goes to 2. We guess and will prove that the limit problem is

{u(t) +u(t) = flut), t>0, (3.2)

U(O) =up € R.
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From Picard’s Theorem problem (3.2) has a unique global solution u. Moreover,
given T > 0 and ug € R, there exists a constant K., = K, (ug,T) > 0 such that
lu(t)] < Koo, for all t € [0,T].

In the next result we prove the continuity of the solutions of (3.1) with respect to
the initial data and exponent parameter.

Theorem 3.1. Let u, be a solution of (3.1) with uy(0) = ugp, and let u be the solution
of (3.2) with u(0) = uo. If uop = uo in R as p = 2, then for each T >0, up — u in
C([0,T];R) as p — 2.

Proof. Let T > 0 be fixed and suppose that ug, — 1o in R as p = 2. Subtracting the
two equations in (3.1) and (3.2) and making the product with u, — u we obtain

1d .
5 77t (t) = W@ + [fup Oy (t) — w(®)]up(t) — u(?)]

= [f(up(t)) — f(u(t)][up(t) — u(t)].
Adding +|u(t)|P~2u(t), using that f is Lipschitz and that for any &, € R™,
(I€[P~2¢ — InfP~2n)(€ —n) > 0,

we obtain

;jtlup( t) —u(®)* < Luy(t) — u®)]* = (Ju®)P~* = Du(t) (up () — u(?))

< Llup(t) = u(®)? + [[u@®) P! = [u®)|]| up(t) — u(®)],

for all t € (0,T).
Now, let us estimate the term

[u(®P~" = Ju(@)][| up(t) — u(@)].
By the Mean Value Theorem, for each p > 2 there is a ¢ € (2, p) such that
[u@®)P~F = Ju(@)]| = [[u@®)]* nfu@)]||p - 2|

provided that u(t) # 0. Consider the continuous function gy : [0, K] — R given by

(w) = w!inw ifw e (0, Ko,
1= 0 ifw =0,

where 6 > 1 is a given number. Using this continuous function defined in the compact
set [0, Koo] with @ = 1 when |u(t)| < 1 and with § = 2 when |u(t)| > 1, there exists
a positive constant R such that

[lu()]*~ I Ju(t)]| < R,
for all ¢t € [0,T] with u(t) # 0. So,

[[u(®)[P~" = Ju(®)l] < Rlp — 2],
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for all t € [0,T]. Thus,

5 S lup(t) — (DI <Lluy() — u(t)? + Rlp — 2ug(t) — u(t)

<Lluy(t) — (D) + 3 [Rlp — 20 + Lluy(t) — u(n)?

for all t € (0,T).
Integrating from 0 to ¢, t < T, we obtain

[up(t) = u(t)* <Juop — uol* + [Rlp — 2[]*T + /(2L + Dfuy(r) — u(r)Pdr.
0

So, by Gronwall-Bellman’s Lemma we obtain
lup(t) = u()* < (Juop — wol® + [Rlp — 2[°T) eEHDT,
for all ¢t € [0, T]. Therefore, u, — u in C([0,T];R) as p — 2. O

If we restrict the initial conditions to a bounded set M C R in problem (3.1) and
consider I < 1 then we can obtain the following uniform estimates of the solutions of
problem (3.1).

Proposition 3.2. Consider f with Lipschitz constant L < 1. Let M be a bounded set
and u, be a solution of (3.1) with u,(0) = uop € M. There exists a positive number ro
such that |uy(t)| < ro, for each t > 0 and for all p € (2,3].

Proof. Let T > 0. Multiplying the equation on (3.1) by u,(7) we have that

() < oty () + | F (7)) ()
< —Jup(T) [P+ [ (up(7)) = F(O)|up(T)] + [ £ (0)[[up(7)]-
So,
1d 9 » 9
5 7717 < —lup(T)[” + Lluy(7)[” + Colup (7)), (3.3)

where Cyp :=|f(0)| > 0.
If |up(7)] > 1, —|up(7)[P < —|uy(7)|?, then from (3.3)

5 - lup(r)P < (L = Dlug(r)P? + Coluy(r)]

Consider € > 0 arbitrary. Using Young’s inequality we obtain

i) < (<1423 (e + 5 <C>

Now, choose € = ¢; > 0 sufficiently small such that 0 < ¢; < (1 — L)'/2 we obtain

1d

Sl (n)P < —aluy (1) + G,
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where o := %

2 €1

2
—%L>0and c, =1 (@> . Then

oty (7)1 + 2y () P2 < 236 (3.4)
=

If |up(7)| < 1, then from (3.3),

d
E|up(7)|2 < 2(L + Cy) =: Cs.

Thus,

d

E[|up(7')|2]e2‘”—|—2a|up(7')|262‘” < 022 +2alu, (1)]2e2°7 < (Cy+2a)e?*™. (3.5)
Considering y,(7) := |u,(7)|? and C3 := max{2Cy, Cs + 2a}, we obtain from (3.4)

and (3.5) that

d
%[Z/p(T)e%ﬂ] < 03620‘7, for all 7 > 0.

Integrating from 0 to ¢, we have

Cs 2o Cs

Cs
< 2 ~S 2aﬁ
2a 200 T ‘uOPl + 2a6

yp(t)e™ < yp(0) +

—2at

Multiplying by e , we obtain

C C
|“p(t>|2 =yp(t) < |u0p|26_2at + 73 < |uop|260 + f, for all ¢t > 0.
o @

Since ug, € M and M is bounded, there exists K > 0 such that |ug,| < K for all
p € (2,3]. Thus,

N\ 1/2
lup(T)| <719 := <K2—|—§i) , for allt > 0and p € (2,3]. O

4. CONTINUITY OF THE FLOWS
AND WEAK UPPER SEMICONTINUITY OF ATTRACTORS

Our objective in this section is to prove that the limit problem of problem (1.1) as D,
increases to infinity and ps(-) — 2 in L*°(2) as s — oo is described by the ordinary
differential equation in (3.2).

The next result guarantees that (3.2) is in fact the limit problem for (1.1), as
s — 0. The proof is analogous to the proof of Theorem 4.2 in [26].

Theorem 4.1. Let ug be a solution of (1.1) with us(0) = uos and let u be the solution
of (3.2) with f = Br and u(0) = uo. If uos — ug in H as s — oo, then for each
T >0, us = uinC(0,T]; H) as s = +00.
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Theorem 4.2. The problem (3.2) defines a semigroup of class K.

Proof. We define S(t) : R — R by S(¢)uo = u(t) with u being the unique global solution
of the problem (3.2) with u(0) = ug. It is easy to see that {S(¢) : R — R,¢ > 0}
verifies the semigroup properties. Consider F(u) := f(u) — u. We will show that
{S5(t) : R — R,t >0} is of class K. In fact, multiplying the equation in (3.2) by u(t)
we obtain

[F(0)[”

P < (24 5ty + T (1)

Let T > 0 fixed, integrating (4.1) from 0 to 7, 7 < T, we obtain

u(r)]* < [u(0)]” + [F(0)*T + /(2L+ Dlu(s)|*ds.
0

So, by Gronwall-Bellman’s Lemma it follows that
lu(T)]? < (Juo|? + |F(0))2T)eE+DT - for all 7 < T.

Thus, we conclude that for each ¢ > 0, S(¢) maps bounded sets into bounded sets.
As a result we conclude that for each ¢ > 0 the operator S(¢) : R — R is compact. [

Observe that the semigroup of class IC defined by the problem (3.2) is not necessarily
B-dissipative. For example, if f : R — R is given by f(u) = au with > 1 a real
number and so the solution of (3.2) is u(t) = upe(*1* and |u(t)| — oo as t — co. In
this case a global B-attractor for the problem (3.2) does not exist. If the semigroup
defined by the limit problem (3.2) is B-dissipative then, Theorem 2.7 guarantees that
the semigroup S(¢) has a maximal compact invariant global B—attractor 4. By
Proposition 2.2 in [17], A is given as the union of all bounded complete trajectories
in R. There are examples that provide situations where the semigroup defined by the
limit problem (3.2) is B-dissipative. If f : R — R is given by f(u) = au with a < 1
a real number and so the solution of (3.2) is u(t) = uge(*~V* and u(t) — 0 as t — oo.
So, the semigroup defined by the limit problem (3.2) is B-dissipative.

Now, we suppose that f = Bg : R — R, which is globally Lipschitz, is such that
the limit problem (3.2) has a B-dissipative semigroup. So, let A, be the maximal
compact invariant global B-attractor for (3.2) with f = Bj.

We need to use the following theorem.

Theorem 4.3 ([26]). Let As be the global attractor associated with problem (1.1) and
M, the global attractor for problem (3.1) with f = Bjr. Then, dist(As; Mp) — 0 in
the topology of H, when ps(-) — p > 2 in L>=(Q).

The condition (H) is needed in the proof of the weak upper semicontinuity of
the family of global attractors for problem (1.1) as ps — 2 in L>°(£2). Moreover, after the
functions ps(-) enter into F, (2), given dg > 0, in order to show A, C Os,(As) for
s > 0 large enough, we have to control the gap between two consecutive functions
ps and ps+1 by an appropriate term which depends on s and Jy (see hypothesis (H2)
below).



Study of ODE limit problems for reaction-diffusion equations 125

Consider p := 2+ €, where ¢y > 0 is from hypothesis (H). Then there exists s; € N
large enough such that 2 < ps, < p and 2 < p; < ps, is constant for all s > s;. Thus,
let us call, {ps}s>s, simply {p;};>1, where p; := p,,. Consider from now on L < 1 and
the constant ro = ro(M) in Proposition 3.2 for M = M, , where M, is the global
attractor for problem (3.1) with the exponent parameter ps,. The set M, is compact,
in particular bounded, so given dy there exists ty = to(dg, Ms,) > 0 such that

: do
dlStR(S(t)Msl;.Aoo) < W, for all ¢ > to, (42)

where S(t)up = u(t,up) is the solution of (3.2) and distr(S(t)Ms,;Ax) is the
Hausdorff semi-distance between S(t)Ms, and Ay in R. Let 19 € M, be arbitrarily
fixed. Let {S7(¢)} be the semigroup defined by problem (3.1) with the exponent
parameter p; and consider u;(7) := S7 (7).

Let us first prove the following three technical lemmas and then we present our
main result.

Lemma 4.4. There exists a positive constant k such that

g1 (1)~ = [ (7)[P 7 < Klpj = pjsal,
for all 7 € N and T € [0, ).
Proof. By the Mean Value Theorem we conclude that

i1 ()P = Jua (NP7 = [Jwga ()% I g (7] 2y = pjal,
for some 6; € (pj+1,p;). Consider the continuous function gy : [0,79] — R given by

2Inz ifx € (0,7,
go(w) = {o if o =0,

where ro = r9(M,, ) is as in Proposition 3.2 and 6 > 1 is a given number. Using this
continuous function defined in the compact set [0, ro] with § = 2 when |u;41(7)] <1
and with 6 = 2 + ¢ when |u;1(7)| > 1, there exists a positive constant £ such that

[tj1 (7) | In fujga (7)]| < 5,
for all j € N and 7 € [0, %] and the result follows. O

Now, we can establish the following hypothesis

(52 ]1/2

0
527 2| Qe CLF D0 ¢,

(H2) For each j € N, p; —pjq1| < {
Lemma 4.5. If condition (H2) is fulfilled for a given 6y > 0, then

do

distr (87 (o) Moy S (to) May) < 520075

for all 7 € N.
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Proof. Subtracting the two equations in (3.1) and making the product with u; — ;41
we obtain

%%M(t) = a2 o [Jua (01 72 () = Juaja (8P 200 ()]t () — w41 (8)]

= [ (8)) = fujr (O (8) = ujpa (B)).

Adding =+|uj+1(t)[Pi~2u 41 (), using that f is Lipschitz and that for any &, € R",
(I€[P=2€ = [n[P=2n) (€ —n) > 0, we obtain

1d

337/ (1) = wis (O < Lluy(t) —wjpa (1))

= [l (O 7% = uj B 7] 0 (8) (05 (8) = w41 (1)
< Lluj(t) = ujra ()

A g ()P = Jugpn (E) P+ 7 g () — g (8)]

< (L4 3) 50 - wnloP

1 - 12
t 5 g @OF 7 = fuga P+
for all ¢ € [0,tp]. Using Lemma 4.4 we obtain

d
%Wj(t) —ujr1 () < 2L+ 1) Ju;(t) — uj1(t)]* + £°|pj — pjal?,

for all t € [0,t0]. From condition (H2),

5
527 12 |QeL+ Doty

lpj —pjnl* <

Then,

d

52
2w () = (O < L+ 1) |u; (1) — wja () + 57 ¢

527 12 |QeL+Dtot,”

for all t € [0,%o]. Integrating from 0 to ¢y and using that u;(0) = wu;11(0) = v,
we obtain
53 i
luj () — ujyq ()] < m + / (2L 4 1) |uj(t) — ujyq (t)[2dL.
0

So, by Gronwall-Bellman’s Lemma we obtain

o
luj(t) —ujra(t)] < 5772’



Study of ODE limit problems for reaction-diffusion equations 127

for all j € N and ¢ € [0, tg]. Thus,

— inf distr (57 (to)o; b
besHllI(lto)/vls1 IS R( (OWO’ )
< distr (S (to)v0; S+ (t0)ibo)

do
= |uj(to) — ujt1(to)] < 51|Q1/2°

distr (57 (to)1bo; S7H (t) M., )

Since ¢y € Mg, was arbitrary, we conclude that

dist (57 (to) M, ; S7H (to)M,) = sup  distr (S (t0)vho; 57 (to) M, ) < -570~
YoEM,, 571Q1/2

O
Lemma 4.6. Given dg > 0, we have

do

distr (S*(to) M, ; S(to) Ms,) < ORE

for £ large enough.
Proof. Let ¢y € Mg, arbitrarily fixed. From Theorem 3.1,

do

|S¢(t0) 1o — S(to)tho| = |ue(to) — ulto)| < IToER

for ¢ large enough. So,

distgr (S*(to)tho; S(to) My, ) = bes(itn)fM_ distg (S (t0)to; b)

do

< distr (S (to)tbo; S(to)tho) < Q2

Since ¥y € M, was arbitrary, we conclude that

5
distg (S (to) M, : S(t)) My, ) = sup  distr (S (to)tho; S(to)Ms,) < —o,
YoEM,, 4|Q|1/2

for ¢ large enough. O

Theorem 4.7. Consider f = Bjr : R — R with L < 1 and such that the limit problem
(3.2) has a B-dissipative semigroup. Assume condition (H). If condition (H2) is fulfilled
for a given 6y > 0, then

As C 050(-/400) = {Z € Ha ér_}Af ||Z - a”H < 60}

for s large enough.



128 Jacson Simsen, Mariza Stefanello Simsen, and Aleksandra Zimmermann

Proof. Consider the sequence of functions {ps(-)}sen defined by p1(-) = p1(-), p2(-) =
P2(*)y .oy Psy—1(*) = Ds;—1(+), D5, () = Psyy Psy+1(*) = Dsy» - - - Applying Theorem 4.3
for this sequence of exponent functions and for the original sequence of diffusion
coefficients, we have that

dist(Ag; My,) < 8o/4

for s large enough. Here dist(As; My, ) is the Hausdorff semi-distance between A, and
M, in the Hilbert space H. So,

dist(As; Aoo) < dist(Ag; My, ) + dist(My,; Aso)

4.3
< (5()/4+|Q‘1/2diStR(Msl;Aoo), ( )

for s large enough.
By the invariance of the global attractor M, we have S*(tg) M, =My, . Then,

l
distr (M, Ase) < Y distr(S7 (t0) M, ; ST () My, )

Jj=1

+ diStR(Se+1(t0)Msl ] S(to)./\/lsl) + diStR(S(to)Msl ; -Aoo);

(4.4)

for all ¢ € N. Using (4.2), Lemma 4.5, Lemma 4.6 and letting ¢ — +oo in (4.4),
we obtain

dista (Mo Au) < 3 =0 % o _ 3 45
st (M5 Aoo) < ; 57]Q1/2 T 4|Q[1/2 - 4|Q1/2  4|Q/2 (4.5)
Using (4.5) in (4.3) the result follows. O

By using Theorem 4.1 in [16] we obtain the following result.
Theorem 4.8. The problem (3.2) defines a monotone semigroup.

So, using Theorem 4.2, Theorem 4.8, Theorem 2.11 and Theorem 4.7 we obtain
the following interesting result

Theorem 4.9. Consider f = Bjg : R = R with L < 1 and such that the limit
problem (3.2) has a B-dissipative semigroup. Assume condition (H). If condition
(H2) is fulfilled for a given §y > 0, then there exist equilibria x.,y* € Ao with
Ao C [+, y*] satisfying (1)—(4) from Theorem 2.11 and there exists so = so(do) such
that As C Os, ([, y*]), for all s > so.

Remark 4.10. If problem (3.2) has only one equilibrium z., for example, when
F = f — I is linear, then A, = {z,}.

Remark 4.11. One can also obtain some information about equilibria and attractivity
inside the interval [z, y*] in the previous theorem by using Theorem 2.2 at p.17 in [27].
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5. FINAL REMARKS

A natural question that raise is why is technically difficult to go directly to 27 In order
to prove upper semicontinuity of a family of global attractors {As; s € N}, generally
compactness of the set A := [ J, . As is needed. To obtain this compactness generally is
used the invariance of the attractors and a uniform estimate of the solutions with
a constant which does not depend on the initial data and on the parameter which is
varying. When you go directly to 2, this is a problem. Usually to obtain this uniform
estimates of the solutions without dependence on the initial conditions the Lemma 5.1
at p. 163 in [28] is used. If we stop in a stage before, that is, at p > 2, we can choose
the constant uniformly for the family of exponents p, (see [24-26]), but not when we

go directly to 2, because
i 1
plifg‘*' p—23\2/(p—2) 00
()2°)

The same difficulty would appear if we wanted to prove upper semicontinuity of
the family of attractors {M,; p > 2} of problem (3.1) when p — 2. Observe that
Proposition 3.2 is not enough to obtain compactness of the set U o My, because of
the restriction on the considered initial data.

Acknowledgements

This work has been partially supported by Science without Borders-CAPES-PVE-Process
88881.030388/2013-01. The first author was supported with CNPq scholarship — process
202645/2014-2 (Brazil). The second author was supported with CAPES scholarship —
process 99999.006893/2014-07 (Brazil).

REFERENCES

[1] L. Arnold, I. Chueshov, Order-preserving random dynamical systems: Equilibria, attrac-
tors, applications, Dynamics and Stability of Systems 13 (1998) 3, 265—280.

[2] J.M. Arrieta, A.N. Carvalho, A. Rodriguez-Bernal, Upper semicontinuity for attractors
of parabolic problems with localized large diffusion and nonlinear boundary conditions,
J. Differential Equations 168 (2000), 33-59.

[3] T. Caraballo, J.A. Langa, J. Valero, Asymptotic behaviour of monotone multi-valued
dynamical systems, Dyn. Syst. 20 (2005) 3, 301-321.

[4] A.N. Carvalho, Infinite dimensional dynamics described by ordinary differential equations,
J. Differential Equations 116 (1995), 338-404.

[5] A.N. Carvalho, J.K. Hale, Large diffusion with dispersion, Nonlinear Anal. 17 (1991)
12, 1139-1151.

[6] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image
restoration, SIAM J. Math. 66 (2006), 1383-1406.



130

Jacson Simsen, Mariza Stefanello Simsen, and Aleksandra Zimmermann

(7l

(8]
(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

18]

[19]

20]

21]

22]

23]

24]

J.W. Cholewa, A. Rodriguez-Bernal, Ezxtremal equilibria for monotone semigroups in
ordered spaces with applications to evolutionary equations, J. Differential Equations 249
(2010), 485-525.

E. Conway, D. Hoff, J. Smoller, Large time behavior of solutions of systems of non-linear
reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978) 1, 1-16.

L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev Spaces with
Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011.

F. Ettwein, M. Ruzicka, Ezistence of local strong solutions for motions of electrorheo-
logical fluids in three dimensions, Computers and Mathematics with Applications 53
(2007), 595-604.

Z. Guo, Q. Liu, J. Sun, B. Wu, Reaction-diffusion systems with p(x)-growth for image
denoising, Nonlinear Anal. Real World Appl. 12 (2011), 2904-2918.

J.K. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal.
Appl. 118 (1986), 455—466.

J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and
Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988.

J.K. Hale, C. Rocha, Varying boundary conditions with large diffusivity, J. Math. Pures
Appl. 66 (1987), 139-158.

J.K. Hale, K. Sakamoto, Shadow systems and attractors in reaction-diffusion equations,
Appl. Anal. 32 (1989), 287-303.

Ph. Hartman, Ordinary Differential Equations, Classics Appl. Math., vol. 38, STAM,
Philadelphia, 2002.

O. Ladyzhenskaya, Attractors for Semigroups and Fvolution Equations, Cambridge
University Press, Lezioni Lincee, 1991.

De. Liu, The critical forms of the attractors for semigroups and the existence of critical
attractors, Proc. Roy Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454 (1998), 2157-2171.

K. Rajagopal, M. Ruzicka, Mathematical modelling of electrorheological materials, Contin.
Mech. Thermodyn. 13 (2001), 59-78.

M. Ruzicka, Flow of shear dependent electrorheological fluids, C.R. Acad. Sci. Paris
Sér. I 329 (1999), 393-398.

M. Ruzicka, FElectrorheological Fluids: Modeling and Mathematical Theory, Lectures
Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.

J. Simsen, C.B. Gentile, Well-posed p-Laplacian problems with large diffusion, Nonlinear
Anal. 71 (2009), 4609-4617.

J. Simsen, M.S. Simsen, PDE and ODE limit problems for p(z)-Laplacian parabolic
equations, J. Math. Anal. Appl. 383 (2011), 71-81.

J. Simsen, M.S. Simsen, M.R.T. Primo, Continuity of the flows and upper semicontinuity
of global attractors for ps(x)-Laplacian parabolic problems, J. Math. Anal. Appl. 398
(2013), 138-150.



Study of ODE limit problems for reaction-diffusion equations 131

[25] J. Simsen, M.S. Simsen, M.R.T. Primo, On ps(z)-Laplacian parabolic problems with
non-globally Lipschitz forcing term, Z. Anal. Anwend. 33 (2014), 447-462.

[26] J. Simsen, M.S. Simsen, M.R.T. Primo, Reaction-diffusion equations with spatially
variable exponents and large diffusion, Commun. Pure Appl. Anal. 15 (2016) 2, 495-506.

[27] H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive
and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41, American
Mathematical Society, Providence, 1995.

[28] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-
-Verlag, New York, 1988.

Jacson Simsen
jacson@unifei.edu.br

Universidade Federal de Itajubéd
Instituto de Matemaética e Computagao
Av. BPS n. 1303, Bairro Pinheirinho
37500-903, Itajuba — MG — Brazil

Universitdt of Duisburg-Essen
Fakultdt fiir Mathematik
Thea-Leymann-Str. 9, 45127 Essen, Germany

Mariza Stefanello Simsen
mariza@unifei.edu.br

Universidade Federal de Itajuba
Instituto de Matemética e Computagao
Av. BPS n. 1303, Bairro Pinheirinho
37500-903, Itajubd — MG — Brazil

Universitat of Duisburg-Essen
Fakultédt fir Mathematik
Thea-Leymann-Str. 9, 45127 Essen, Germany

Aleksandra Zimmermann
aleksandra.zimmermann@uni-due.de

Universitat of Duisburg-Essen
Fakultédt fir Mathematik
Thea-Leymann-Str. 9, 45127 Essen, Germany

Received: December 1, 2016.
Revised: July 10, 2017.
Accepted: August 1, 2017.





