PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current state of photoconductive semiconductor switch engineering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the current state of a photoconductive semiconductor switch engineering. A photoconductive semiconductor switch is an electric switch with its principle of operation based on the phenomenon of photoconductivity. The wide application range, in both low and high-power devices or instruments, makes it necessary to take design requirements into account. This paper presents selected problems in the scope of designing photoconductive switches, taking into account, i.e. issues associated with the element trigger speed, uniform distribution of current density, thermal resistance, operational lifespan, and a high, local electric field generated at the location of electrodes. A review of semiconductor materials used to construct devices of this type was also presented.
Twórcy
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
autor
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • [1] D. Mauch, W. Sulivan, A. Bullick, A. Neuber, J. Dickens., High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanism, IEEE Trans. Plasma Sci. 43 (6) (2015) 2021–2031.
  • [2] J.S. Sullivan, Wide Bandgap Extrinsic Photoconductive Switches, in Lawrence Livermore National Laboratory Report LLNL-TH-640323, 2013.
  • [3] F.J. Zutavern, et al., Properties of high gain GaAs switches for pulsed power applications, Digest of Technical Papers, 11th IEEE International Pulsed Power Conference 2 (1997) 959–964.
  • [4] M.B. Kuppam, RF Signal Processing Using Ultrafast Optoelectronics Devices and Related Terahertz Spectroscopy Experiments, in PhD Thesis, IMEP-LAHC Laboratory, University of Grenoble, 2013, France.
  • [5] S.F. Zutavern, A.P. Glover, P.J. Foster, F.E. White, Extracting Dynamic Resistance from a Pulsed Power Switch with a Least Squares Approach, in Sandia National Laboratories Report SAND2013-4767C, 2013.
  • [6] W.A. Stygar, et al., Shaping the output pulse of a linear-transformer-driver module, Phys. Rev. Spec. Top.-Accel. 12 (2009) 030402.
  • [7] A. Mar, Electrical Breakdown Physics in Photoconductive Semiconductor Switches (PCSS), in Sandia National Laboratories 2015 LDRD Annual Report, 2015, pp. 213–214.
  • [8] Y. Shen, et al., A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator, Rev. Sci. Instrum. 86 (5) (2015) 055110.
  • [9] M. Östling, R. Ghandi, C.M. Zetterling, SiC power devices – present status, applications and future perspective, Proc. Int. Symp. Power 10-15 (2011).
  • [10] S. Sheng, et al., An investigation of 3C-SiC Photoconductive power switching devices, Mater. Sci. Eng. B-Adv. 46 (1997) 147–151.
  • [11] S. Porowski, Growth and properties of single crystalline GaN substrates and homoepitaxial layers, Mater. Sci. Eng. B-Adv. 44 (1997) 407–413.
  • [12] S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, GaN: Processing, defects, and devices, J. Appl. Phys. 86 (1) (1999) 1–69.
  • [13] H. Amano, Progress and prospect of the growth of wide-band-gap group III nitrides: development of the growth method for single-crystal bulk GaN, Jpn. J. Appl. Phys. 52 (5R) (2013) 050001.
  • [14] E.A. Preble, et al., Single crystal group III nitride articles and method of producing same by hype method incorporating a polycrystalline layer for yield enhancement, US Patent No. US20100327291 A1 (2010).
  • [15] J.H. Leach, R. Metzger, E.A. Preble, K.R. Evans, High voltage bulk GaN-based photoconductive switches for pulsed power applications, Proc. SPIE 8625 (2013) 86251Z.
  • [16] V. Meyers, D. Mauch, J. Mankowski, J.C. Dickens, A.A. Neuber, Characterization of the optical properties of GaN:Fe for high voltage photoconductive switch applications, 2015 IEEE Pulsed Power Conference (2015).
  • [17] A. Malguth, Fe in III–V and II–VI semiconductors, Phys. Status Solidi (B) 245 (No. 3) (2008) 455–480.
  • [18] Y. Chen, H. Lu, D. Chen, F. Ren, R. Zhang, Y. Zheng, High-voltage photoconductive semiconductor switches fabricated on semi-insulating HVPE GaN:Fe template, Phys. Status Solidi (C) 13 (5–6) (2016) 374–377.
  • [19] X. Wang, S. Mazdumder, W. Shi, A GaN-based insulated photoconductive semiconductor switch for ultrashort high-power electric pulses, IEEE Electron Dev. Lett. 36 (2015) 5.
  • [20] D. Mauch, J. Dickens, V. Kuryatkov, V. Meyers, R. Ness, S. Nikishin, A. Neuber, Evaluation of GaN:Fe as a high voltage photoconductive semiconductor switch for pulsed power applications, IEEE Pulsed Power Conference (PPC) (2015).
  • [21] A.D. Koehlera, T.J. Anderson, A. Khachatrian, A. Nath, M.J. Tadjer, S.P. Buchner, K.D. Hobarta, F.J. Kuba, High voltage GaN lateral photoconductive semiconductor switches, ECS J. Solid State Sci.Technol. 6 (11) (2017) S3099–S3102.
  • [22] D. Mauch, C.h. Thomas, A. Neuber, J. Dickens, Overview of high voltage 4H-SiC photoconductive semiconductor switch efforts at Texas Tech University, IEEE Int. Power Modul. (2014) 23–27.
  • [23] M. Suproniuk, P. Kamiński, M. Pawłowski, R. Kozłowski, M.a. Pawłowski, An intelligent measurement system for characterisation of defect centres in semi-insulating materials, Prz. Elektrotechniczny 86 (11a) (2010) 247–252.
  • [24] M. Suproniuk, P. Kamiński, R. Kozłowski, M. Pawłowski, Effect of deep-level defects on transient photoconductivity of semi-insulating 4H-SiC, Acta Phys. Pol. A 125 (4) (2014) 1042–1048.
  • [25] M. Pawlowski, M. Suproniuk, The effect of model adequacy error of the correlation method for studies of defect centres by photoinduced transient spectroscopy, Prz. Elektrotechniczn 87 (10) (2011) 230–235.
  • [26] M. Suproniuk, P. Kaminski, M. Pawłowski, M. Wierzbowski, Current status of modelling the semi-insulating 4H-SiC transient photoconductivity for application to photoconductive switches, Opto-Electron. Rev. 25 (3) (2017) 171–180.
  • [27] J. Zutavern, et al., High-gain GaAs photoconductive semiconductor switches (PCSS): device lifetime, high-current testing, optical pulse generators, Proc. SPIE 2343 (1994) 146–154.
  • [28] W.C. Nunnally, D. Cooperstock, Methods and configurations for improving photo-conductive switch performance, Conference Record of the Twenty-Fifth International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop (2002) 183–186.
  • [29] G.J. Caporaso, S.E., Sampayan, J.S. Sulivan, D.M. Sanders, Optically-initiated silicon carbide high voltage switch, US Patent No. US8125089 B2 (2012).
  • [30] G.M. Loubriel, A.G. Baca, F. Zutavern, GaAs Photoconductive semiconductor switch, US Patent No. US5804815 (1998).
  • [31] A. Baca, et al., High gain photoconductive semiconductor switch having tailored doping profiles zones, US Patent No. US6248992 B1 (2001).
  • [32] A. Mar, et al., Doped contacts for high-longevity optically activated, high-gain GaAs photoconductive semiconductor switches, IEEE T. Plasma Sci. 28 (5) (2000) 1507–1511.
  • [33] G.J. Caporaso, Photoconductive switch package, US Patent No. US20140038321 A1 (2014).
  • [34] J.S. Sullivan, D.M., Sanders, S.A. Hawkins, S.E. Sampayan, High voltage photo switch package module, US Patent No. US8655125 B2 (2014).
  • [35] F.J. Mar, H.P. Zutavern, G.A. Vawter, R. Gallegos, Advanced high-longevity GaAs photoconductive semiconductor switches, in: Sandia National Laboratories Report SAND2015-3597C, 2015.
  • [36] F.J. Zutavern, et al., A compact, repetitive accelerator for military and industrial applications, in: Sandia National Laboratories Technical Report SAND98-0898, 1998.
  • [37] A. Mar, F.J. Zutavern, G. Loubriel, Multi-line triggering and interdigitated electrode structure for photoconductive semiconductor switches, US Patent No. US7173295 B1 (2007).
  • [38] R.S. Bhattacharya, H.B. Evans JR, Photoconductive semiconductor switch, US Patent No. US20140264684 A1 (2014).
  • [39] Kyma Website: http://www.kymatech.com/news/226-kyma-launches-their-first-device-product-the-ko-switch.
  • [40] SemiconductorToday Website: http://www.semiconductor-today.com/news_items/2015/nov/ues_271115.shtml.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69a58905-f7cf-42d9-b6c9-72b7c783497f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.