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Abstract. The analysis of asymptotic representations 

of the systems protected from harmful influences is 
carried out. Various types of general models of the "man-
machine-environment" with protection are considered. 
Each of them adequately describes some of the practically 
important qualities of the object, and they all together 
describe the object in terms of its safe operation. The 
dynamic properties of complex ergonomic systems, 
presented in the form of systems of differential equations 
with a small parameter at the derivative are investigated 
The methods of reducing the impact on the person of 
harmful factors are theoretically substantiated. The 
dynamic protection response speed is considered to be 
significantly greater than the harmful factor production 
rate. 

Numerical solution of the general problem and the 
analytical solution for autonomous case is obtained for 
harmful effects. By using asymptotic the system of 
equations has been solved in closed form not only for 
autonomous case, but also for parameters smoothly 
changing in time. The estimates of the cost of protection 
was obtained for the various cost-functionals and for 
different functions in the right-hand side of the equation 
describing the dynamics of protection. To assess the 
accuracy of model calculations and for graphic 
representation of the results mathematical package 
MAXIMA is used. 

Key words: "Man-Machine-Environment" model, 
non-linear system, singular equations, asymptotic, 
linearization. 

 
INTRODUCTION 

 
It is known [1], that safety and efficiency are 

conflicting criteria, because they compete for the same 
resources. Their union in the single criterion is possible 
only in the super-system [1, 2]. This approach allowed us 
to consider the model of the "man-machine-environment-
protection" as a well-known general model of competition 
of two factors – the safety and efficacy [3]. 

It runs a large number of processes with different 
time scales. The hierarchy of these times is such that they 
differ by many orders of magnitude [4]. Usually, various 
problems of physics and engineering are modeled by 
means of differential or algebraic equations. And almost 
always it turns out that they have a high order, and when 
it comes to systems, they are of large dimensions. To 
overcome this problem the two diametrically opposite 
approaches are known.  

The essence of the first lies in the fact that if their 
characteristic elements are similar in the system, they can 
be considered equal in a first approximation. And we use 
that symmetry, considering small deviations in the 
subsequent approximations. 

The second is used when the individual elements of 
the system are very different in their characteristics. In 
this case, we introduce small parameters representing 
their attitude and conduct an asymptotic reduction of 
dimension, i.e., reducing the number of degrees of 
freedom. The use of asymptotic methods are not always 
stipulated specifically, and sometimes not even realized in 
modelling. So, in engineering practice it is extremely 
widespread to model systems with one degree of freedom. 
It is clear that the use of such models involves an 
asymptotic reduction of dimension. If the system in 
question consists of sets of similar elements, the 
asymptotic approach does not lead to a reduction of 
dimension, but rather to increase it. This method is 
applied to a very important class of models in which 
discrete systems are replaced by continuous, that is, as in 
our case, a system of differential equations. As a rule, the 
solution based on the asymptotic method cannot be 
expressed in a finite form, but only with the help of some 
series [4]. It turns out that the perturbation series are not 
necessarily converge. For example, it often happens that 
you can use the infinite series that diverges, but have the 
value in a certain sense. A typical situation is as follows: a 
function can be expanded in a series of functions and 
approximation, given by the first few terms of the series. 
It serves the better, the closer is the independent variable, 
or a parameter to a certain limit value. In many cases, the 
values of terms at first decrease rapidly, but then again 
begin to increase. In mathematical literature such series 
are called asymptotic series [5]. 

Here we first consider the overall system "Man-
Machine-Environment" under this approach. The input to 
this system is the information from the superior system 
(targets, instructions, etc.); the exit of such system is the 
result of work and a lot of other factors that are harmful to 
the environment and personnel. 

In operation the system changes its internal state. The 
element "man" has three functional parts: the part, that 
controls the "machine"; the object of the external 
environment and the impact of an object from the 
"machine". 

"Machine" element performs basic technological 
functions: impact on the subject of work and change the 
parameters of the environment. 
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The paper discusses different types of common 

models of "human-machine environment", each of which 
adequately describes some of the practically important 
quality of the object, and all together they describe the 
object in terms of its safe operation [6]. We get further 
details and results in the well-known and, as well as, some 
new models of subsystems [7]. This work is devoted to 
the quantitative analysis of an important model of a 
system with protection of a human from the harmful 
effects of the external environment and the impact of sub-
system called the "machine". 

 
THE ANALYSIS OF RECENT RESEARCH AND 

PUBLICATIONS  
 

In works [8, 9] a model of dynamic system 
describing the situation where primary subsystem 
"produces" a harmful factor, and second sub-system 
called “protection”, tries to reduce it completely, or at a 
reasonable price. As the base model – the basis for 
modification – a system of ordinary differential equations 
was taken. It describes fundamental laws of competition 
[10], and also known in ecology as a model of 
coexistence of species [11 – 15].  

We first introduce the basic assumptions, directly 
following from everyday experience. They are evident so, 
do not require additional justification but only need to be 
formalized. A more detailed discussion of these issues are 
delivered in [8]. 

We call Bioinfluence U of the harmful factor an 
increasing function of time t and the intensity of the factor 
u. In the first approximation, it can be written as an 
integral  

 

0

( )
T

U u t dt  . 

 
It also fits the additive property [6]. 

The following axiom are true: 
a) autocumulative; 
b) mutual cumulative; 

c) intensity of bioinfluence u fits: 

– in a regular situation  0u
t





; 

– in critical situations (positive feedback) 0u
t





. 

Protection factor z(t) may be controlled adaptively or 
programmatically, depending on the value of u(t). 

The cost of protecting C=C(z) is natural to consider 
as a monotonically increasing function of its intensity. 

In [6-8], we have conducted a formal description of 
the model that is under study here. 

Suppose there are two types of internal system states: 
production factors (including the production of harmful 
substances) U and the impact of protective factors Z. Let f 
and g be smooth functions, monotonically increasing in 
both arguments, such that ZUUgZf ,,0)0,(),0(  . 
Then it is natural to consider that ),(' ZUfU  ; 

),(' ZUgZ  . This is the most common model of 
dynamics of the system with protection. However, to 
obtain meaningful results, it must be detailed. 

Suffice general case of such a model of the system 
can be represented as: 

 
'( ) ( ) ( ) ( )
'( ) ( ( ), ( ))

u t u t z t u t

z t F u t z t

  




,  (1) 

 
with the constrains 0, сu z z  , where zс is fixed 
(stationary) protection value. 

The function F(u, z) can take quite arbitrary form [8]. 
The most common of them are the following three: 

 
1) )())(),(( tutztuF  ; 
2) )()())(),(( tztutztuF   ; 

3) )()()()())(),(( 2
21

2
21 tztztututztuF   . 

 
Solution of the system of differential equations (1) is 

not always possible to find analytically. Therefore, to find 
protection functions and the harmful effects some 
numerical methods for solving systems of differential 
equations are used. For the system (1) it is necessary to 
investigate the stability at different values of the 
parameters of the protection subsystem  

 
F(u(t), z(t)). 

 
It is also necessary to evaluate the cost of protection 

for different functions F. In [8] (1) is assumed to be 
autonomous, and the bifurcation parameters are not 
dependent on time. 

 
OBJECTIVES  

 
In this paper, in contrast to [8], it is assumed that the 

parameters of equation (1) depends on the time and takes 
into account the effect of "boundary layer" [5] near t = 0. 

Based on the results obtained in the course of the 
study, an analysis of bifurcations for protection is made, 
ie, we find a scenario of possible loss of stability [16] and 
the effectiveness of protection. 

 
 

THE MAIN RESULTS OF THE RESEARCH 
 

1. Methods for studying the stability of models 
 

The linearization theorem establishes a connection of 
the phase portrait of the nonlinear system (1) in the 
neighborhood of a fixed point with the phase portrait of 
its linearization [16, 17]. 

In general, if a nonlinear system ( )y Y y
  has a 

simple fixed point y = 0, then in the neighborhood of the 
origin, the phase portraits of this system and its 
linearization qualitatively equivalent, unless a fixed point 
of the linearized system is not the center [17]. 

Application of the theorem on linearization similarly 
is considered in the analysis of environmental models just 
the same way as for competition in economic systems 
[18-20]. We conclude that the studied in this paper 
system has a stationary point (0, 0) of the "saddle" type. 
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2. The problem of fast and slow variables. 
 
Dynamical systems include a large number of 

processes with different time scales. Given the time 
hierarchy process reduces the number of differential 
equations. "Very slow" variables do not change on time 
scales of these processes and can be regarded as constant 
parameters. For "fast" variables there can be written 
algebraic equations for their steady-state values instead of 
differential equations. The "fast" variables reach their 
stationary values almost instantly if compared to the 
"slow" [18]. This difference leads to a singularity by 
parameter in the second of the equations (1). Note that the 
asymptotic solution itself obtained in [8], is singularly in 
t. Because of this, the protection features and hazards for 
the second term of the asymptotic approximation have the 
form [8]: 
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Therefore, the solution obtained in [8] was adequate 

only far from the starting point. In this paper we use a 
generalized asymptotic representation, which takes into 
account the effect of "boundary layer" in the vicinity of 
the starting point. 

 
3. Research Algorithm 
 
We use an iterative algorithm with the following 

three steps. 
A) We find, if possible, an analytical solution of the 

system (1) using the functions included in the standard 
MAXIMA package, which is distributed on the basis of 
General Public License. If a solution cannot be found in a 
general way, then we use numerical methods (in the 
default package there used sufficiently universal method 
of Adams [19, 21]) or the asymptotic method proposed 
below. 

B) After a solution of (1) was found, analyze the 
behavior of the hazard function, at what times, if any, its 
values exceed its protection features, that is a system of 
dynamic protection comes to operation.  

By finding these intervals we decide: 
- to increase the protection against harmful factors 

that lead to an increased cost of the protection system; 
- leave the system without modification; 
- if the intensity of harmful factors does not exceed 

an opportunity of fixed protection, the overall cost of the 
protection system can be reduced by reducing both fixed 
and dynamic protection. 

C) Selecting the solution  and repeat the steps  A) - 
C) until you go beyond the limitations (the time of the 
system work or its value). 

 

 
4. Analytical study of the model 
 
Consider a system of differential equations (1) with a 

small parameter : 
 









)()()('
)()()()('

tztutz

tutztutu




.             (2) 

 
The difference of this system from the previously 

considered is a quasi-stationary harm u(t). Let us solve the 
system (2) with the asymptotic method by finding a series 
of terms with 210 ,,  . 

To begin, write out the system (2), taking into 
account the dependence of the functions ),( tu  and 

),( tz  in time and small parameter. 
We solve the system (2) for the main asymptotic term 

- with 0 (zero approach). 
Write the asymptotic for the functions ),( tu  and 
),( tz  as follows: 

 
0( , ) ( ) ( )u t u t O   ,  0( , ) ( ) ( )z t z t O   . 

 
The system (2) for the zero-order approximation 

takes the form : 
 

0 0 0

0 0

'( ) ( ) ( )
0 ( ) ( )
u t u t z t

u t z t



 

 

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After substitution  )()( 00 tztu



 ,  with stationary 

protection   zc = 0   we get:  
 

2
0 0'( ) ( )z t z t  .  

t
tz



1)(0  ,  
t

tu
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
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The resulting singularity at t=0 indicates the 

impossibility of such a solution for the Cauchy problem at 
t0 =0. 

Protection functions and hazard at zero 
approximation for  zc> 0  have the form: 

 
1

( )
1/ c

z t
t z




,  ( )
( 1/ )c

u t
t z



 



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Similarly, we solve the system (2) with regard to the 

term 1 . 
So, we write asymptotic for ),( tu  and ),( tz . The 

system (2) for the first approximation takes the form: 
 

0 1 0 0 0

1 0 0 1

0 0 1 0 1

'( ) '( ) ( ) ( ) ( )
( ( ) ( ) ( ) ( ))
'( ) ( ) ( ) ( ) ( )

u t u t au t u t z t

u t z t u t z t

z t u t u t z t z t
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.      (4) 
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The terms with the factor  in powers of 2 and higher 
form the remainder term 2( )O  . 

The obtained system for )(1 tz  and )(1 tu  has the 
form: 
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After replacement )1)((1)( 211
t

tztu





  we solve 

the equation: 
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As a result, the function )(1 tz  is found and, with its 

help, also the function )(1 tu , that are the first terms of the 
asymptotics. 
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Then the resulting functions of protection and hazard 

intensities for the first approximation take the form : 
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Similarly to [8] a decision based on the second term 

of the asymptotics is given above. 
 
5. Selection of the coefficients and the number of 

expansion terms 
 
We solve the system (2) with the asymptotic method 

for   0, 1. It will be shown that, in this study, the first 
two members of the series will be sufficient to obtain a 
good approximation. 

We present an algorithm for constructing an 
asymptotic solution of the problem (2) is similar to [18], 
under the assumption that the function on the right side is 
sufficiently smooth. We will look for it in the form of the 
asymptotic expansion 

 
     0, , ,z t z t z       (1.12) 

 
where  )...()(),( 10 tztztz    is the so-called regular 
series: 

 

...)()(),( 10   zzz , 
 

that describes boundary layer in the neighborhood of t=0  
(=t /). 

We choose the coefficients of system (2) from the 
physical meaning of the problem : 

 
=0.5,  β=5,  =2,  =1,  =0.0001. 

 
Also, we define the initial conditions at t=0 for 

numerical and asymptotic solutions as zc = z0 < u0, 
because the system has to emerge from the fixed 
protection value. Let z0=2,  u0=3 and T <10 – the time 
interval for the system. In the first approach the 
parameters of the system (2) are constant. 

 
6. The asymptotic solution of the problem 
 
We show that for β (0, 10), the asymptotic solution 

built for the first two terms of the expansion, is little 
different from a sufficiently accurate numerical one. 

Using the procedure described in [8, 22, 23], we 
obtain the graph of the solution of problem (2). The 
results are shown in the figures below. For a better 
representation of the system behavior near the boundary 
layer, we draw the schedule not on the whole range of T, 
but only at the beginning of its section . 

 

 
Fig. 1.  The schedule of the first approximation (the first 
two terms of the series) and regular part of the asymptotic 
behavior at the boundary layer for protection function   
z(t, ) 

 

 
Fig. 2.  Schedule of regular member of the zero error and 
the border of the asymptotic solutions for the protection 
function with respect to the numerical one 
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Fig. 3.  Graph of error of the first approximation of 
regular and border of the asymptotic solutions for the 
protection function with respect to its numerical solution. 

 
As can be seen from the graphs, the error decreases 

with increasing number of terms in the expansion in 
powers of . 

 
7. Estimates of the cost of protection 
 
We use the function 
 

 

T

CdtzzcTC

0
00 )()( ,  (6) 

 
where:  0С  – the cost of fixed protection;  0z  – the value 
of fixed protection;  )(zc  – cost function, which can take 
the form of a), b) and c) below. 

We integrate, taking T=6.5 (the time during which 
the necessary protection of the system will take a value 
less than 0z ) and write down the results: 

 
а) zzc )( ,   C=1270; 

б) 2)( zzc  ,  C=1744; 
в) zzzc ln)(  ,  C=1421. 
 
A disadvantage of the cost function (6) is that the 

formula did not account for the protection increases with 
the increasing reaction rate . Therefore it is suggested 
the following clarification: 

 

       0
0

max 0, ' , (7)
t

cc z z z K z d C       
 

 
wherein the coefficient K is selected from considerations 
of the reaction speed value contribution in the total cost.  
In the experiments K was chosen, such that the 
contribution rate of charge and other factors was 
equivalent (K = 0.01).  But as   increases, the integration 
period is reduced without limit together with the integral 
value. This does not fit the actual conditions. 

Therefore the task of optimizing the cost function 
that depends not on a one-time operation of the system 
but also on all the contingencies that can happen for the 
entire life span of the system as well as the actual cost of 
purchasing the system.  

 
Then the cost function takes the form: 
 

      , , , (8)S n c z t       
 

 
where: c(z(t)) is a function (7); () is a function of the 
purchase price of protection system. 

A coefficient n is numerically equal to the number of 
emergency situations in which the protection system goes 
from a stationary mode and for each adverse factor It is 
calculated using the formula n = T × N, where T is the 
average life-term of the protection system, N – the 
average number of emergencies  in a year. 

This makes it possible to calculate the minimum cost 
of the whole system and say what speed parameters  and 
 we need to buy it. The problem is reduced to one-
dimensional optimization of  S (,)  for small .  Here is 
an example for n = 10.  The function in (8) is chosen in 
the form: 

 , .
2


   
  

 
Fig. 4.  Schedule of value S on the parameter    at  n = 10 

 
The minimum is achieved when    0.294 and the 

value of the cost function   S ()  41792. 
 

 
CONCLUSIONS 

 
In this paper there are first obtained or improved the 

following results and methods: 
1. For the first time there proposed a dynamic model 

of the system with protection from harmful factors taking 
into account the great difference in order of specific 
operating times and speeds of the subsystems. 

2. For the “singular” differential equations of this 
model there improved and applied the method of 
asymptotic expansion in small parameter of the solution 
taking in view of the phenomenon of boundary layer. 

3. The method [8] got its further development, which 
allowed to determine the total cost, depended on the 
intensity of dynamic protection functions. It uses 
previously obtained analytical expressions and the variety 
of cost functions for the specific cases of protection. 

The paper also proposes for practical application the 
approach that saves the total cost of the protection [6].  
For this purpose were studied times and the system states 
when the intensity of harmful factor  u(t)  does not exceed 
the threshold of dynamic protection action and hence the 
value  z0  of static protection may be redundant. 
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