PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical resistivity analysis for the internal capillary water migration mechanism of porous stone

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Porous stone that has been exposed to the natural environment for a long time has developed a variety of diseases under the influence of environmental and geological factors. Especially, migration of soluble salt solution in porous stone and salt crystallization will inevitably lead to the deterioration of stone surface. To investigate the spatial and temporal evolution features of porous stone during capillary water migration, a series of capillary water absorption tests with different types of porous sandstone were performed. The process of capillary water absorption and stone surface deterioration characteristics was observed by high-density resistivity method. The results indicate that the process of capillary rise can be divided into stages of rapid rising, transition, and slow rising. According to the analysis of electrical resistivity measurements at millimeter scale, there was a negative correlation between capillary rise rate and sample total porosity, and the rising trend of the dry-wet interface was presented as the saddle shape. Then, a novel capillary rise model was proposed considering the variation in pore saturation. Moreover, it has been demonstrated that the migration and crystallization of soluble salt solution were the main causes for the change of micropore structure, resulting in increased deterioration of porous stone during the dry-wet cycles. This present study serves as some references for the protection and restoration of porous stone.
Czasopismo
Rocznik
Strony
213--231
Opis fizyczny
Bibliogr. 82 poz.
Twórcy
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing University, Chongqing 400045, China
  • National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing 400045, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing University, Chongqing 400045, China
  • National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing 400045, China
autor
  • Academy of Dazu Rock Carvings, Chongqing 402360, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing University, Chongqing 400045, China
  • National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing 400045, China
Bibliografia
  • 1. Allam H, Duplan F, Clerc JP, Amziane S, Burtschell Y (2020) About electrical resistivity variation during drying and improvement of the sensing behavior of carbon fiber-reinforced smart concrete. Constr Build Mater 264:120699. https://doi.org/10.1016/j.conbu ildmat.2020.120699
  • 2. Alves C, Figueiredo CAM, Sanjurjo-Sánchez J, Hernández AC (2021) Salt weathering of natural stone: a review of comparative laboratory studies. Heritage 4:1554-1565. https://doi.org/10.3390/herit age4030086
  • 3. An N, Tang CS, Cheng Q, Wang DY, Shi B (2020) An experimental application of electrical resistivity/resistance method (ERM) to characterize the evaporation process of sandy soil. Phys Chem Earth, Parts a/b/c 117:102873. https://doi.org/10.1016/j.pce.2020. 102873
  • 4. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Eng 5:1-8
  • 5. Bai B, Rao DY, Chang T, Guo ZG (2019) A nonlinear attachmentdetachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J Hydrol 578:124080. https:// doi.org/10.1016/j.jhydrol.2019.124080
  • 6. Barone G, Mazzoleni P, Pappalardo G, Raneri S (2015) Microtextural and microstructural influence on the changes of physical and mechanical proprieties related to salts crystallization weathering in natural building stones. The example of Sabucina stone (Sicily). Constr Build Mater 95:355-365. https://doi.org/10.1016/j.conbu ildmat.2015.07.131
  • 7. Basu S, Orr SA, Aktas YD (2020) A geological perspective on climate change and building stone deterioration in London: Implications for urban stone-built heritage research and management. Atmosphere (basel) 11(8):788. https://doi.org/10.3390/ATMOS11080 788
  • 8. Cai JC, Jin TX, Kou JS, Zou SM, Xiao JF, Meng QB (2021) Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir 37:1623-1636. https://doi.org/10.1021/ acs.langmuir.0c03134
  • 9. ęelik MY, Sert M (2021) An assessment of capillary water absorption changes related to the different salt solutions and their concentrations ratios in the Döger tuff (Afyonkarahisar-Turkey) used as building stone of cultural heritages. J Build Eng 35:102102. https://doi.org/10.1016/j.jobe.2020.102102
  • 10. Chen GB, Li Y, Li T, Zhang GH (2022) Deterioration law of intermittent jointed sandstone mechanical properties under water-rock interaction. Acta Geophys 70(4):1923-1935. https://doi.org/10. 1007/s11600-022-00832-5
  • 11. Fang JC, Deng HF, Qi Y, Xiao Y, Zhang HB, Li JL (2019) Analysis of changes in the micromorphology of sandstone joint surface under dry-wet cycling. Adv Mater Sci Eng 2019:8758203. https://doi. org/10.1155/2019/8758203
  • 12. Fediuk A, Wilken D, Thorwart M, Wunderlich T, Erkul E, Rabbel W (2020) The applicability of an inverse schlumberger array for near-surface targets in shallow water environments. Remote Sens 12(13):2132. https://doi.org/10.3390/rs12132132
  • 13. Folk RL (1974) Petrology of sedimentary rocks. Hemphill Publishing Co., Austin, Texas, p 182
  • 14. Gibeaux S, Vazquez P, De Kock T, Cnudde V, Thomachot-Schneider C (2018) Weathering assessment under X-ray tomography of building stones exposed to acid atmospheres at current pollution rate. Constr Build Mater 168:187-198. https://doi.org/10.1016/j.conbu ildmat.2018.02.120
  • 15. Han TC, Best AI, Sothcott J, North LJ, MacGregor LM (2015) Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones. J Appl Geophys 112:279-289. https://doi.org/10.1016/j.jappgeo.2014. 12.006
  • 16. Hatir ME (2020) Determining the weathering classification of stone cultural heritage via the analytic hierarchy process and fuzzy inference system. J Cult Herit 44:120-134. https://doi.org/10. 1016/j.culher.2020.02.011
  • 17. Hou DS, Zhang W, Sun M, Wang P, Wang MH, Zhang JR, Li ZJ (2020) Modified Lucas-Washburn function of capillary transport in the calcium silicate hydrate gel pore: a coarse-grained molecular dynamics study. Cem Concr Res 136:106166. https://doi.org/10. 1016/j.cemconres.2020.106166
  • 18. Hsu SY, Huang V, Park SW, Hilpert M (2017) Water infiltration into prewetted porous media: dynamic capillary pressure and green-Ampt modeling. Adv Water Resour 106:60-67. https://doi.org/10. 1016/j.advwatres.2017.02.017
  • 19. Huang Z, Zeng W, Gu QX, Wu Y, Zhong W, Zhao K (2021) Investigations of variations in physical and mechanical properties of granite, sandstone, and marble after temperature and acid solution treatments. Constr Build Mater 307:124943. https://doi.org/10. 1016/j.conbuildmat.2021.124943
  • 20. Huang X, Pang JX, Zou JQ (2022) Study on the effect of dry-wet cycles on dynamic mechanical properties of sandstone under sulfuric acid solution. Rock Mech Rock Eng 55:1253-1269. https:// doi.org/10.1007/s00603-021-02729-z
  • 21. Jia M, Liang J, He L, Zhao X, Simon S (2019) Hydrophobic and hydrophilic SiO2-based hybrids in the protection of sandstone for anti-salt damage. J Cult Herit 40:80-91. https://doi.org/10. 1016/j.culher.2019.06.001
  • 22. Jiang G, Guo F, Polk JS (2015) Salt transport and weathering processes in a sandstone cultural relic, North China. Carbonates Evaporites 30:69-76. https://doi.org/10.1007/s13146-014-0202-9
  • 23. Jin JX, Zhang XL, Liu XL, Li YH, Li SH (2023) Study on critical slowdown characteristics and early warning model of damage evolution of sandstone under freeze-thaw cycles. Front Earth Sci 10:1006642. https://doi.org/10.3389/feart.2022.1006642
  • 24. Jo YH, Lee CH (2022) Ultrasonic properties of a stone architectural heritage and weathering evaluations based on provenance site. Appl Sci 12(3):1498. https://doi.org/10.3390/app12031498
  • 25. Junique T, Vazquez P, Geraud Y, Thomachot-Schneider C, Sidibe H (2021) Microstructural evolution of granitic stones exposed to different thermal regimes analysed by infrared thermography. Eng Geol 286:106057. https://doi.org/10.1016/j.enggeo.2021.106057
  • 26. Lago M, Araujo M (2001) Capillary rise in porous media. Phys A Stat Mech Its Appl 289:1-17. https://doi.org/10.1016/S0378-4371(00) 00460-X
  • 27. Li M, Yu HM, Du HP (2020) Prediction of capillary suction in porous media based on micro-CT technology and B-C model. Open Phys 18(1):906-915. https://doi.org/10.1515/phys-2020-0203
  • 28. Liang K, Zeng XH, Zhou XJ, Ling CB, Wang P, Li KP, Ya SS (2018) Investigation of the capillary rise in cement-based materials by using electrical resistivity measurement. Constr Build Mater 173:811-819. https://doi.org/10.1016/j.conbuildmat.2018.02.155
  • 29. Lindström N, Heitmann N, Linnow K, Steiger M (2015) Crystallization behavior of NaNO3-Na2SO4 salt mixtures in sandstone and comparison to single salt behavior. Appl Geochem 63:116-132. https://doi.org/10.1016/j.apgeochem.2015.07.007
  • 30. Liu BL, Yang HQ, Karekal S (2020) Effect of water content on argilliza-tion of mudstone during the tunnelling process. Rock Mech Rock Eng 53:799-813. https://doi.org/10.1007/s00603-019-01947-w
  • 31. Liu Y, Zhang ZL, Liu X, Wang L, Xia XH (2021) Efficient image segmentation based on deep learning for mineral image classification. Adv Powder Technol 32:3885-3903. https://doi.org/10. 1016/j.apt.2021.08.038
  • 32. Lockington DA, Parlange JY (2004) A new equation for macroscopic description of capillary rise in porous media. J Colloid Interface Sci 278:404-409. https://doi.org/10.1016/j.jcis.2004.06.024
  • 33. Ludovico-Marques M, Chastre C (2012) Effect of salt crystallization ageing on the compressive behavior of sandstone blocks in historical buildings. Eng Fail Anal 26:247-257. https://doi.org/10. 1016/j.engfailanal.2012.08.001
  • 34. Ma TT, Wei CF, Yao CQ, Yi PP (2020) Microstructural evolution of expansive clay during drying-wetting cycle. Acta Geotech 15(8):2355-2366. https://doi.org/10.1007/s11440-020-00938-4
  • 35. Mareš J, Bruthans J, Weiss T, Filippi M (2022) Coastal honeycombs (Tuscany, Italy): moisture distribution, evaporation rate, tensile strength, and origin. Earth Surf Process Landforms 47(6):1653-1667. https://doi.org/10.1002/esp.5340
  • 36. Mehrabian H, Gao P, Feng JJ (2011) Wicking flow through microchannels. Phys Fluids 23(8):122108. https://doi.org/10.1063/1. 3671739
  • 37. Menéndez B, Petranova V (2016) Effect of mixed vs single brine composition on salt weathering in porous carbonate building stones for different environmental conditions. Eng Geol 210:124-139. https://doi.org/10.1016/j.enggeo.2016.06.011
  • 38. Mol L, Viles HA (2012) Exposing drying patterns: using electrical resistivity tomography to monitor capillary rise in sandstone under varying drying conditions. Environ Earth Sci 68(6):1647-1659. https://doi.org/10.1007/s12665-012-1858-x
  • 39. Molina E, Benavente D, Sebastian E, Cultrone G (2015) The influence of rock fabric in the durability of two sandstones used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Eng Geol 197:67-81. https://doi.org/10.1016/j.enggeo.2015.08.009
  • 40. Mosavinejad SHG, Barandoust J, Ghanizadeh A, Sigari M (2018) Crack detection of a HPCFRCC thin plate using electrical resistivity method. Constr Build Mater 193:255-267. https://doi.org/ 10.1016/j.conbuildmat.2018.10.190
  • 41. Mutschler T, Kramar U, Vergara MR, Triantafyllidis T (2013) Influence of hematite coating on the activation of the swelling potential of smectite-bearing rocks. Rock Mech Rock Eng 46:835-847. https:// doi.org/10.1007/s00603-012-0289-z
  • 42. Nara Y, Morimoto K, Yoneda T, Hiroyoshi N, Kaneko K (2011) Effects of humidity and temperature on subcritical crack growth in sandstone. Int J Solids Struct 48(7-8):1130-1140. https://doi.org/10. 1016/j.ijsolstr.2010.12.019
  • 43. Pan BZ, Ruhan A, Guo YH, Zhang LH, Wei BY, Zhou WY (2022) An experimental study on the complex resistivity of fractured rock under different saturation conditions. Acta Geophys 70(3):1061-1081. https://doi.org/10.1007/s11600-022-00762-2
  • 44. Pandey SC, Pollard AM, Viles HA, Tellam JH (2014) Influence of ion exchange processes on salt transport and distribution in historic sandstone buildings. Appl Geochem 48:176-183. https://doi.org/ 10.1016/j.apgeochem.2014.07.001
  • 45. Pedrosa F, Andrade C (2021) Spatial variability of concrete electrical resistivity and corrosion rate in laboratory conditions. Constr Build Mater 306:124777. https://doi.org/10.1016/j.conbuildmat. 2021.124777
  • 46. Peng J, Xu CH, Dai BB, Sun LJ, Feng JJ, Huang QS (2022) Numerical investigation of brittleness effect on strength and microcracking behavior of crystalline rock. Int J Geomech 22(10):04022178. https://doi.org/10.1061/(asce)gm.1943-5622.0002529
  • 47. Pötzl C, Dohrmann R, Siegesmund S (2018) Clay swelling mechanism in tuff stones: an example of the Hilbersdorf Tuff from Chemnitz. Germany Environ Earth Sci 77(5):118. https://doi.org/10.1007/ s12665-018-7345-2
  • 48. Qi BW, Xu PL, Wu CZ (2023) Analysis of the infiltration and water storage performance of recycled brick mix aggregates in sponge city construction. Water 15(2):363. https://doi.org/10.3390/w1502 0363
  • 49. Qu ML, Lu SY, Lin QY, Foroughi S, Yu ZT, Blunt M (2022) Characterization of water transport in porous building materials based on an analytical spontaneous imbibition model. Transp Porous Media 143(2):417-432. https://doi.org/10.1007/s11242-022-01776-6
  • 50. Rastegarnia A, Ghafoorri M, Moghaddas NH, Lashkaripour GR, Shojaei H (2022) Application of cuttings to estimate the static characteristics of the dolomudstone rocks. Geomech Eng. 29(1):65-77. https://doi.org/10.12989/gae.2022.29.1.065
  • 51. Ren CH, Yu J, Liu SY, Yao W, Zhu YL, Liu XY (2022) A plastic strain-induced damage model of porous rock suitable for different stress paths. Rock Mech Rock Eng 55:1887-1906. https://doi.org/10. 1007/s00603-022-02775-1
  • 52. Sadjadi Z, Jung M, Seemann R, Rieger H (2015) Meniscus arrest during capillary rise in asymmetric microfluidic pore junctions. Langmuir 31(8):2600-2608. https://doi.org/10.1021/la504149r
  • 53. Sato M, Hattanji T (2018) A laboratory experiment on salt weathering by humidity change: salt damage induced by deliquescence and hydration. Prog Earth Planet Sci 5:84. https://doi.org/10.1186/ s40645-018-0241-2
  • 54. Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613-1624. https://doi.org/10.1016/j.cemconres.2003.12.034
  • 55. Selim H, Karaka§ A, Coruk Ö (2019) Investigation of engineering properties for usability of Lefke stone (Osmaneli/Bilecik) as building stone. Bull Eng Geol Environ 78(8):6047-6059. https:// doi.org/10.1007/s10064-019-01520-3
  • 56. Soomro A, Qureshi AL, Jamali MA, Ashraf A (2019) Groundwater investigation through vertical electrical sounding at hilly area from Nooriabad toward Karachi. Acta Geophys 67(1):247-261. https://doi.org/10.1007/s11600-019-00247-9
  • 57. Sousa L, Siegesmund S, Wedekind W (2018) Salt weathering in granitoids: an overview on the controlling factors. Environ Earth Sci 77(13):502. https://doi.org/10.1007/s12665-018-7669-y
  • 58. Supandi S (2021) Geotechnical profiling of a surface mine waste dump using 2D Wenner-Schlumberger configuration. Open Geosci 13:335-344. https://doi.org/10.1515/geo-2020-0234
  • 59. Terzaghi K (1943) Theoretical soil mechanics
  • 60. Useviciute L, Baltrenaite-Gediene E (2022) Modelling of a capillary rise height of biochar by modified Lucas-Washburn equation.
  • 61. Environ Model Assess 27(1):29-43. https://doi.org/10.1007/ s10666-021-09782-6
  • 62. Van Genuchten MT (1980) A closed-form equation for predicting the ing the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892-898. https://doi.org/10.2136/sssaj1980.03615 995004400050002x
  • 63. Van Belleghem B, Montoya R, Dewanckele J, Van den Steen N, De Graeve I, Deconinck J, Cnudde V, Van Tittelboom K, De Belie N (2016) Capillary water absorption in cracked and uncracked mortar-A comparison between experimental study and finite element analysis. Constr Build Mater 110:154-162. https://doi.org/ 10.1016/j.conbuildmat.2016.02.027
  • 64. Villagrán-Zaccardi Y, Alderete N, De Belie N (2017) Improved model for capillary absorption in cementitious materials: progress over the fourth root of time. Cem Concr Res 100:153-165. https://doi. org/10.1016/j.cemconres.2017.07.003
  • 65. Wang ZD, Zeng Q, Wang L, Yao Y, Li KF (2015) Electrical resistivity of cement pastes undergoing cyclic freeze-thaw action. J Mater Civ Eng 27(1):04014109. https://doi.org/10.1061/(ASCE)MT. 1943-5533.0001042
  • 66. Wang YH, Viles H, Desarnaud J, Yang SL, Guo QL (2021) Laboratory simulation of salt weathering under moderate ageing conditions: implications for the deterioration of sandstone heritage in temperate climates. Earth Surf Process Landforms 46(5):1055-1066. https://doi.org/10.1002/esp.5086
  • 67. Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2013) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci 69(4):1203-1224. https://doi.org/ 10.1007/s12665-012-2158-1
  • 68. Xiao D, Hu YF, Wang YY, Deng H, Zhang JC, Tang B, Xi JY, Tang SH, Li G (2022) Wellbore cooling and heat energy utilization method for deep shale gas horizontal well drilling. Appl Therm Eng 213:118684. https://doi.org/10.1016/j.applthermaleng.2022. 118684
  • 69. Xu J, Lan W, Ren C, Zhou XG, Wang SH, Yuan J (2021) Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization. Cold Reg Sci Technol 189:103335. https://doi.org/10.1016/j.coldregions.2021.103335
  • 70. Yang XR, Jiang AN, Li MX (2019) Experimental investigation of the time-dependent behavior of quartz sandstone and quartzite under the combined effects of chemical erosion and freeze-thaw cycles. Cold Reg Sci Technol 161:51-62. https://doi.org/10.1016/j.coldr egions.2019.03.008
  • 71. Yim HJ, Bae YH, Jun Y (2021) Hydration and microstructural characterization of early-age cement paste with ultrasonic wave velocity and electrical resistivity measurements. Constr Build Mater 303:124508. https://doi.org/10.1016/j.conbuildmat.2021.124508
  • 72. Yuan GH, Cao YC, Jia ZZ, Gluyas J, Yang T, Wang YZ, Xi KL (2015) Selective dissolution of feldspars in the presence of carbonates: the way to generate secondary pores in buried sandstones by organic CO2. Mar Pet Geol 60:105-119. https://doi.org/10.1016/j. marpetgeo.2014.11.001
  • 73. Zeng XH, Liu HC, Zhu HS, Ling CB, Liang K, Umar HA, Xie YJ, Long GC, Ma C (2020) Study on damage of concrete under uniaxial compression based on electrical resistivity method. Constr
  • 74. Build Mater 254:119270. https://doi.org/10.1016/j.conbuildmat. 2020.119270
  • 75. Zhang JK, Huang JP, Liu JH, Jiang SW, Li L, Shao MS (2019) Surface weathering characteristics and degree of Niche of Sakyamuni entering Nirvana at Dazu rock carvings. China Bull Eng Geol Environ 78(6):3891-3899. https://doi.org/10.1007/ s10064-018-1424-1
  • 76. Zhang ZZ, Niu YX, Shang XJ, Ye P, Zhou R, Gao F (2021d) Deterioration of physical and mechanical properties of rocks by cyclic drying and wetting. Geofluids 2021:6661107. https://doi.org/10. 1155/2021/6661107
  • 77. Zhang P, Chen ZL, Brown KG, Meeussen JCL, Gruber C, Garrabrants AC, Kosson DS (2021a) Drying model of a high salt content cementitious waste form: effect of capillary forces and salt solution. Cem Concr Res 146:106459. https://doi.org/10.1016/j.cemco nres.2021.106459
  • 78. Zhang XY, Ma FN, Yin SX, Wallace CD, Soltanian MR, Dai ZX, Ritzi RW, Ma ZQ, Zhan CJ, Lü XS (2021b) Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: a critical review. Appl Energy 303:117603. https:// doi.org/10.1016/j.apenergy.2021.117603
  • 79. Zhang Z, Liu LL, Li C, Cai JC, Ning FL, Meng QG, Liu CL (2021c) Fractal analyses on saturation exponent in Archie’s law for electrical properties of hydrate-bearing porous media. J Pet Sci Eng 196:107642. https://doi.org/10.1016/j.petrol.2020.107642
  • 80. Zhao HT, Ding J, Huang YY, Tang YM, Xu W, Huang DH (2019) Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials. Struct Concr 20(5):1750-1762. https://doi.org/10.1002/ suco.201900184
  • 81. Zhao JH, Liu CL, Li CF, Zhang YC, Bu QT, Wu NY, Liu Y, Chen Q (2022) Pore-scale investigation of the electrical property and saturation exponent of Archie’s law in hydrate-bearing sediments. J Mar Sci Eng 10(1):111. https://doi.org/10.3390/jmse10010111
  • 82. Zheng H, Feng XT, Pan PZ (2015) Experimental investigation of sandstone properties under CO2-NaCl solution-rock interactions. Int J Greenh Gas Control 37:451-470. https://doi.org/10.1016/j.ijggc. 2015.04.005
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-699e85c0-941e-452d-b7cb-cde36aea81b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.