Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper gives some insight into the relations between two types of Markov processes – in the strict sense and in the wide sense – as well as into two aspects of periodicity. It concerns Markov processes with finite state space, the elements of which are complex numbers. Firstly it is shown that under some assumptions this space can be transformed in such a way that the resulting Markov process is also Markov in the wide sense. Next, sufficient conditions are given under which periodic homogeneous Markov chain is a periodically correlated process.
Czasopismo
Rocznik
Tom
Strony
75--90
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
autor
- Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
- [1] P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulations and Queues, Springer, New York 1999.
- [2] J. L. Doob, Stochastic Processes, Wiley, New York 1953.
- [3] M. Iosifescu, Finite Markov Processes and Their Applications, Wiley, New York 1980.
- [4] C. D. Lai, First order autoregressive Markov processes, Stochastic Process. Appl. 7 (1978), pp. 65-72.
- [5] P. Lancaster, Theory of Matrices, Academic Press, New York 1969.
- [6] H. Minc, Nonnegative Matrices, Wiley, New York 1988.
- [7] J. F. Reynolds, On the autocorrelation and spectral functions of queues, J. Appl. Probab. 5 (1968), pp. 467-475.
- [8] J. F. Reynolds, Some theorems on the transient covariance of Markov chains, J. Appl. Probab. 9 (1972), pp. 214-218.
- [9] E. Seneta, Non-negative Matrices and Markov Chains, Springer, New York 1981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-699ae7a9-7a76-423b-92c5-76f5f2cfdbc9