PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Viscoelastic model for bending process of continuous fiber-reinforced thermoplastic sheets

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of the bending process in thermoplastic sheets reinforced with unidirectional continuous fibers. To capture the material’s viscoelastic response during the bending process, a novel viscoelastic model is described based on the concept of transient reversible networks. The model incorporates kinematic constraints of material incompressibility and fiber inextensibility during deformation of the composite sheets. An analytical solution is derived, enabling the determination of the deformed geometry and bending forces as time-dependent functions of the bending angle, the deformation rate, and material parameters. The model’s performance is evaluated through comparisons with existing experimental data and a prior viscous model for bending process at various deformation rates. This comparison aids in identifying the material parameters and characteristic time associated with the transient reversible networks.
Rocznik
Strony
29--51
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
  • Aerospace Research Institute, Ministry of Science, Research and Technology Tehran, Iran
Bibliografia
  • 1. T.-C. Lim, S. Ramakrishna, Modelling of composite sheet forming: a review, Composites Part A: Applied Science and Manufacturing, 33, 4, 515–537, 2002.
  • 2. K. Friedrich, M. Hou, On stamp forming of curved and flexible geometry components from continuous glass fiber/polypropylene composites, Composites Part A: Applied Science and Manufacturing, 29, 3, 217–226, 1998.
  • 3. K. Friedrich, M. Hou, J. Krebs, Thermoforming of continuous fibre/thermoplastic composite sheets, Composite Materials Series, 11, Elsevier, 91–162, 1997.
  • 4. D. Brands, L.G. di Genova, E.R. Pierik, W.J.B. Grouve, S. Wijskamp, R. Akkerman, Formability experiments for unidirectional thermoplastic composites, Key Engineering Materials, Trans Tech Publishing, 1358–1371, 2022.
  • 5. N.A. Zanjani, S. Kalyanasundaram, Experimental and numerical studies on forming and failure behaviours of a woven self-reinforced polypropylene composite, Advanced Composite Materials, 30, 2, 116–130, 2021.
  • 6. P. Boisse, R. Akkerman, P. Carlone, L. Kärger, S.V. Lomov, J.A. Sherwood, Advances in composite forming through 25 years of ESAFORM, International Journal of Material Forming, 15, 3, 39, 2022.
  • 7. G.B. McGuinness, C.M. ÓBrádaigh, Effect of preform shape on buckling of quasiisotropic thermoplastic composite laminates during sheet forming, Composites Manufacturing, 6, 3–4, 269–280, 1995.
  • 8. C.M. Ó Brádaigh, G.B. McGuinness, S.P. McEntee, Implicit finite element modelling of composites sheet forming processes, Composite Materials Series, 11, Elsevier, 247–322, 1997.
  • 9. H.R. Daghyani, M.T. Abadi, S. Fariborz, Finite element analysis of forming flow stability in thermoplastic composite sheet forming, Key Engineering Materials, 233–236, 703–708, 2002.
  • 10. T.G. Rogers, Rheological characterization of anisotropic materials, Composites, 20, 1, 21–27, 1989.
  • 11. A.J.M. Spencer, Theory of fabric-reinforced viscous fluids, Composites Part A: Applied Science and Manufacturing, 31, 12, 1311–1321, 2000.
  • 12. B.D. Hull, T.G. Rogers, A.J.M. Spencer, Theoretical analysis of forming flows of continuous-fibre-resin systems, Composite Materials Series, 203, 1994.
  • 13. M.T. Abadi, H. Reza, S. Fariborz, Experimental wrinkling analysis in stamp forming of continuous fiber reinforced thermoplastic sheets, [in:] Proceedings of the 1st International Congress on Manufacturing Engineering (TICME2005), Tehran, Iran, 1–8, 2005.
  • 14. M.T. Abadi, Rheological characterization of continuous fiber—reinforced viscous fluid, Journal of Non-Newtonian Fluid Mechanics, 165, 15–16, 914–922, 2010, https://doi.org/10.1016/j.jnnfm.2010.05.001.
  • 15. C.M. O’Bradaigh, R.B. Pipes, Finite element analysis of composite sheet-forming process, Composites Manufacturing, 2, 3–4, 161–170, 1991.
  • 16. A.K. Pickett, T. Queckbörner, P. De Luca, E. Haug, An explicit finite element solution for the forming prediction of continuous fibre-reinforced thermoplastic sheets, Composites Manufacturing, 6, 3–4, 237–243, 1995.
  • 17. S.P. McEntee, C.M. ÓBrádaigh, Large deformation finite element modelling of singlecurvature composite sheet forming with tool contact, Composites Part A: Applied Science and Manufacturing, 29, 1–2, 207–213, 1998.
  • 18. M.T. Abadi, Finite element analysis for thermoforming process of continuous fiber reinforced thermoplastic composites, Polymer Composites, 30, 2, 138–146, 2009, https://doi.org/10.1002/pc.20540.
  • 19. T.A. Martin, D. Bhattacharyya, I.F. Collins, Bending of fibre-reinforced thermoplastic sheets, Composites Manufacturing, 6, 3–4, 177–187, 1995.
  • 20. D. Bhattacharyya, Composite Sheet Forming, Elsevier, 1997.
  • 21. G.B. McGuinness, C.M. ÓBrádaigh, Development of rheological models for forming flows and picture-frame shear testing of fabric reinforced thermoplastic sheets, Journal of Non-Newtonian Fluid Mechanics, 73, 1–2, 1–28, 1997.
  • 22. W.R. Yu, M. Zampaloni, F. Pourboghrat, K. Chung, T.J. Kang, Sheet hydroforming of woven FRT composites: non-orthogonal constitutive equation considering shear stiffness and undulation of woven structure, Composite Structures, 61, 4, 353–362, 2003.
  • 23. J. Cao, P. Xue, X. Peng, N. Krishnan, An approach in modeling the temperature effect in thermo-stamping of woven composites, Composite Structures, 61, 4, 413–420, 2003.
  • 24. E. Guzman-Maldonado, N. Hamila, N. Naouar, G. Moulin, P. Boisse, Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization, Materials Design, 93, 431–442, 2016.
  • 25. E. Sánchez, A. Nájera, O. Sotomayor, Numerical study of the viscoelastic mechanical response of polystyrene in the process of thermoforming through the generalized Maxwell model, Materials Today Proceedings, 49, 107–114, 2022.
  • 26. G.A. Holzapfel, T.C. Gasser, A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications, Computer Methods in Applied Mechanics and Engineering, 190, 34, 4379–4403, 2001.
  • 27. Y. Chen, Z. Guo, X.-L. Gao, L. Dong, Z. Zhong, Constitutive modeling of viscoelastic fiber-reinforced composites at finite deformations, Mechanics of Materials, 131, 102–112, 2019.
  • 28. D. Dörr, F.J. Schirmaier, F. Henning, L. Kärger, A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites, Composites Part A: Applied Science and Manufacturing, 94, 113–123, 2017.
  • 29. B. Nedjar, An anisotropic viscoelastic fibre-matrix model at finite strains: continuum formulation and computational aspects, Computer Methods in Applied Mechanics and Engineering, 196, 9–12, 1745–1756, 2007.
  • 30. I.I. Tagiltsev, P.P. Laktionov, A.V. Shutov, Simulation of fiber-reinforced viscoelastic structures subjected to finite strains: multiplicative approach, Meccanica, 53, 3779–3794, 2018.
  • 31. S. Ropers, M. Kardos, T.A. Osswald, A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites, Composites Part A: Applied Science and Manufacturing, 90, 22–32, 2016.
  • 32. N. Pyatov, H.K. Natarajan, T.A. Osswald, Experimental investigation of in-plane shear behaviour of thermoplastic fibre-reinforced composites under thermoforming process conditions, Journal of Composites Science, 5, 9, 248, 2021.
  • 33. A. Margossian, S. Bel, R. Hinterhoelzl, Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system, Composites Part A: Applied Science and Manufacturing, 77, 154–163, 2015.
  • 34. S.Q. Wang, Transient network theory for shear-thickening fluids and physically crosslinked networks, Macromolecules, 25, 7003–7010, 1992.
  • 35. A.D. Drozdov, Mechanics of Viscoelastic Solids, Wiley, 1998.
  • 36. A.D. Drozdov, A constitutive model in finite thermoviscoelasticity based on the concept of transient networks, Acta Mechanica, 133, 1, 13–37, 1999.
  • 37. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Archive for Rational Mechanics and Analysis, 63, 337–403, 1976.
  • 38. J. Schröder, P. Neff, Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, International Journal of Solids and Structures, 40, 2, 401–445, 2003.
  • 39. M. Itskov, N. Aksel, A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, International Journal of Solids and Structures, 41, 14, 3833–3848, 2004.
  • 40. Z.Y. Guo, X.Q. Peng, B. Moran, A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus, Journal of the Mechanics and Physics of Solids, 54, 9, 1952–1971, 2006.
  • 41. K. Chaimoon, P. Chindaprasirt, An anisotropic hyperelastic model with an application to soft tissues, European Journal of Mechanics-A/Solids, 78, 103845, 2019.
  • 42. J. Schröder, P. Neff, V. Ebbing, Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors, Journal of the Mechanics and Physics of Solids, 56, 12, 3486–3506, 2008.
  • 43. G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, Journal of Elasticity and the Physical Science of Solids, 61, 1–48, 2000.
  • 44. J. Schröder, P. Neff, D. Balzani, A variational approach for materially stable anisotropic hyperelasticity, International Journal of Solids and Structures, 42, 15, 4352–4371, 2005.
  • 45. A.C. Pipkin, T.G. Rogers, Plane deformations of incompressible fiber-reinforced materials, Journal of Applied Mechanics, 38, 3, 634–640, 1971.
  • 46. S.G. Advani, Flow and rheology in polymer composites manufacturing, S.G. Advani [ed.], Composite Materials Series, 10, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69991750-9ce6-4505-befc-7bbbbd693a7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.