
EMERGING MODULARITY DURING THE EVOLUTION
OF NEURAL NETWORKS

Tomasz Praczyk

Computer Department, Polish Naval Academy,
ul. Smidowicza 69, 81-127 Gdynia, Poland

∗E-mail: t.praczyk@amw.gdynia.pl

Submitted: 9th February 2022; Accepted: 19th October 2022

Abstract

Modularity is a feature of most small, medium and large–scale living organisms that has
evolved over many years of evolution. A lot of artificial systems are also modular, how-
ever, in this case, the modularity is the most frequently a consequence of a handmade
design process. Modular systems that emerge automatically, as a result of a learning pro-
cess, are very rare. What is more, we do not know mechanisms which result in modularity.
The main goal of the paper is to continue the work of other researchers on the origins of
modularity, which is a form of optimal organization of matter, and the mechanisms that
led to the spontaneous formation of modular living forms in the process of evolution in
response to limited resources and environmental variability. The paper focuses on ar-
tificial neural networks and proposes a number of mechanisms operating at the genetic
level, both those borrowed from the natural world and those designed by hand, the use of
which may lead to network modularity and hopefully to an increase in their effectiveness.
In addition, the influence of external factors on the shape of the networks, such as the
variability of tasks and the conditions in which these tasks are performed, is also ana-
lyzed. The analysis is performed using the Hill Climb Assembler Encoding constructive
neuro-evolutionary algorithm. The algorithm was extended with various module-oriented
mechanisms and tested under various conditions. The aim of the tests was to investigate
how individual mechanisms involved in the evolutionary process and factors external to
this process affect modularity and efficiency of neural networks.
Keywords: neuro–evolution, modular neural networks, emergent modularity, hybrid al-
gorithms

1 Introduction

The nature has long proven that in the case of
complex systems, only modular architectures have
a chance of survival and development. From ba-
sic electromechanical devices like irons, vacuum
cleaners, or razors to complex body cells, modu-
larity works in a huge number of situations. Modu-
larity itself is a widespread technique for organiz-
ing and simplifying complex systems. The con-

cept of modularity is used primarily to reduce com-
plexity by breaking a system into varying degrees
of interdependence and independence across and to
”hide the complexity of each part behind an ab-
straction and interface” [3]. In technology, the term
of modularity applies to systems that can be de-
composed into a number of components that may
be mixed and matched in a variety of configura-
tions [3]. In the case of artificial neural networks
(ANN), to which this paper is devoted, it means de-

JAISCR, 2023, Vol. 13, No. 2, pp. 107
10.2478/jaiscr-2023-0010

 – 126

108 Tomasz Praczyk

composition of the entire network (modular neural
network–MANN) into a number of sub–networks
loosely connected with other sub–networks.

However, modularity in ANNs is not a goal
in itself. Unlike monolithic networks, MANNs
have features that make them an attractive tool for
solving many problems. Usually, they are simpler
in construction than their monolithic counterparts
which is due to adjusting MANNs to a modular
problem and the fact that the entire problem is typ-
ically more difficult to solve in one piece than af-
ter dividing it into sub–problems each of which is
solved by a separate module [37].

The consequence of the simplicity in construc-
tion is the ease of analysis. The monolithic ANNs
are often treated as black boxes – it is usually very
difficult or even impossible to determine the role
of individual neurons or connections in solving the
whole task. In turn, the decomposition of MANNs
into larger building blocks than neurons elevates the
analysis of the networks to a higher level, instead of
trying to understand the role which individual neu-
rons play in the network we can do the same with
respect to modules [37].

The training of MANNs is also usually easier
compared to monolithic ANNs. Firstly, it is a con-
sequence of the simpler construction of the mod-
ules themselves. Each of them is responsible for a
single piece of a problem, so they do not have to
be so complex as networks dealing with the entire
problem. Secondly, if the division of responsibil-
ity between the modules and general modular ar-
chitecture is known in advance, instead of training
the modules together to cooperate and to solve the
entire problem, they can be trained separately from
each other, even with the use of different algorithms
dedicated to monolithic networks. After the train-
ing of all the modules, they are combined together
and tuned to a problem [37].

Undeniable advantages of MANNs compared
to their monolithic counterparts and ubiquitous
modularity in our daily lives contributed to to the
large interest in this type of networks, both among
researchers and practitioners. On the one hand, it is
currently difficult to imagine image or natural lan-
guage processing without Deep Neural Networks
(DNN) which are an example of MANNs consist-

ing of many sequentially organized modules. On
the other hand, there is also a great interest among
researchers in the phenomenon of modularity it-
self. How modularity arises in the natural world and
what mechanisms lead to it – these are the questions
many scientists are trying to answer.

The modularity of neural networks, which is not
the result of manual, intuitive design based on the
experience of a designer, and sometimes even sim-
ple guesswork, but of evolutionary processes and
gradual growth of the networks from a single neu-
ron to more complex structures is also addressed
in the current paper. Its main contribution is the
analysis of the influence of various factors on evo-
lution of the networks, their modularity and effec-
tiveness. In addition to connection cost, network
size, environmental changes, and multiple selection
pressures whose impact on network modularity and
effectiveness has already been examined by many
researchers, the paper also takes into consideration
such factors as outgoing connection cost, connec-
tion length cost, inter–neuron distance cost, and the
ability to gradually grow the networks.

The paper also proposes four hand-designed
module–oriented mechanisms encoded in the net-
work genotype and applied in the process of net-
work growth. The first is aimed at building larger
neural architectures from small fully formed mod-
ules with dense inner connectivity and one out-
put neuron, the second groups neurons in densely
packed clusters, the third replicates neuron con-
centrations in different network locations, and the
fourth mechanism introduces a new type of neuron
whose task is to split the neural network into sepa-
rate clusters.

In order to examine the influence of the above
mentioned mechanisms and factors on modular-
ity and effectiveness of the networks, experiments
were carried out. The networks of different size
were applied to solve two binary classification
problems, one simpler and one harder. The evolved
networks were examined in terms of their modu-
larity and efficiency. To measure modularity, the
Louvain [5] method for community detection was
applied 1.

In the experiments, the networks evolved ac-
cording a generative neuro–evolutionary algorithm

1C++ implementation of Louvain was taken from https://github.com/riyadparvez/louvain-method

109Tomasz Praczyk

composition of the entire network (modular neural
network–MANN) into a number of sub–networks
loosely connected with other sub–networks.

However, modularity in ANNs is not a goal
in itself. Unlike monolithic networks, MANNs
have features that make them an attractive tool for
solving many problems. Usually, they are simpler
in construction than their monolithic counterparts
which is due to adjusting MANNs to a modular
problem and the fact that the entire problem is typ-
ically more difficult to solve in one piece than af-
ter dividing it into sub–problems each of which is
solved by a separate module [37].

The consequence of the simplicity in construc-
tion is the ease of analysis. The monolithic ANNs
are often treated as black boxes – it is usually very
difficult or even impossible to determine the role
of individual neurons or connections in solving the
whole task. In turn, the decomposition of MANNs
into larger building blocks than neurons elevates the
analysis of the networks to a higher level, instead of
trying to understand the role which individual neu-
rons play in the network we can do the same with
respect to modules [37].

The training of MANNs is also usually easier
compared to monolithic ANNs. Firstly, it is a con-
sequence of the simpler construction of the mod-
ules themselves. Each of them is responsible for a
single piece of a problem, so they do not have to
be so complex as networks dealing with the entire
problem. Secondly, if the division of responsibil-
ity between the modules and general modular ar-
chitecture is known in advance, instead of training
the modules together to cooperate and to solve the
entire problem, they can be trained separately from
each other, even with the use of different algorithms
dedicated to monolithic networks. After the train-
ing of all the modules, they are combined together
and tuned to a problem [37].

Undeniable advantages of MANNs compared
to their monolithic counterparts and ubiquitous
modularity in our daily lives contributed to to the
large interest in this type of networks, both among
researchers and practitioners. On the one hand, it is
currently difficult to imagine image or natural lan-
guage processing without Deep Neural Networks
(DNN) which are an example of MANNs consist-

ing of many sequentially organized modules. On
the other hand, there is also a great interest among
researchers in the phenomenon of modularity it-
self. How modularity arises in the natural world and
what mechanisms lead to it – these are the questions
many scientists are trying to answer.

The modularity of neural networks, which is not
the result of manual, intuitive design based on the
experience of a designer, and sometimes even sim-
ple guesswork, but of evolutionary processes and
gradual growth of the networks from a single neu-
ron to more complex structures is also addressed
in the current paper. Its main contribution is the
analysis of the influence of various factors on evo-
lution of the networks, their modularity and effec-
tiveness. In addition to connection cost, network
size, environmental changes, and multiple selection
pressures whose impact on network modularity and
effectiveness has already been examined by many
researchers, the paper also takes into consideration
such factors as outgoing connection cost, connec-
tion length cost, inter–neuron distance cost, and the
ability to gradually grow the networks.

The paper also proposes four hand-designed
module–oriented mechanisms encoded in the net-
work genotype and applied in the process of net-
work growth. The first is aimed at building larger
neural architectures from small fully formed mod-
ules with dense inner connectivity and one out-
put neuron, the second groups neurons in densely
packed clusters, the third replicates neuron con-
centrations in different network locations, and the
fourth mechanism introduces a new type of neuron
whose task is to split the neural network into sepa-
rate clusters.

In order to examine the influence of the above
mentioned mechanisms and factors on modular-
ity and effectiveness of the networks, experiments
were carried out. The networks of different size
were applied to solve two binary classification
problems, one simpler and one harder. The evolved
networks were examined in terms of their modu-
larity and efficiency. To measure modularity, the
Louvain [5] method for community detection was
applied 1.

In the experiments, the networks evolved ac-
cording a generative neuro–evolutionary algorithm

1C++ implementation of Louvain was taken from https://github.com/riyadparvez/louvain-method

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

called Hill Climb Assembler Encoding (HCAE). It
represents an incremental approach to evolution of
neural networks. In HCAE, neural networks are de-
signed in many iterations. Each iteration is a sepa-
rate evolutionary run that is responsible for a small
piece of a resultant network. The task of each run
is to update neurons/connections that have already
been established by previous runs or to add new
neurons/connections. All changes made to the net-
works are performed by evolutionary shaped pro-
grams similar to simple assembler programs. To
evolve the programs cooperative co–evolutionary
algorithm is applied.

HCAE is a simplified version of Hill Climb
Modular Assembler Encoding (HCMAE) [38], i.e.
an algorithm designed to evolve modular neural
networks. However, HCMAE assumes that the
modular architecture of the networks is predeter-
mined, it does not evolve. HCAE is basically a
single–module HCMAE equipped with additional
mechanisms that are designed to achieve modular-
ity through evolution, not manually.

The rest of the paper is organized as fol-
lows: section two presents related work, section
three describes HCAE, section four details module–
oriented mechanisms, section five reports the exper-
iments, and the final section concludes the paper.

2 Related work
Increasing complexity of problems solved with

the help of neural networks contributed to the devel-
opment of different algorithms dedicated especially
to MANNs and extensions of traditional algorithms,
like HCAE, to the concept of modularity.

With the simplest case of modularity in neural
networks we deal when a problem can be manu-
ally decomposed into sub–problems. In that case,
the architecture of a MANN reflects the structure
of the problem: each sub–problem extracted from
the original problem is linked to a separate module.
Parallel processing in the modules requires an inte-
gration mechanism responsible for combining out-
puts of each module. Since the task of each mod-
ule is known beforehand, they can be separately
trained by means of a selected learning algorithm,
e.g. BackPropagation. Examples of such an ap-
proach can be found among other things in [4, 7,
28, 40, 45, 46].

The methods for automatic design of MANNs
are necessary when the decomposition of a problem
into sub–problems is unknown in advance. In [10,
22, 35], the methods are presented which arbitrarily
determine a general modular architecture of the net-
work and then adjust individual modules to it. They
use evolutionary techniques or self–organization to
assign tasks to each module, to design the modules,
and to determine cooperation between the modules.
The number of modules and inter–module connec-
tivity are imposed from above.

Cooperative Co–Evolutionary Neural Networks
[37] is an ensemble–based approach in which mod-
ules collaborating within the same MANN are not
connected and they negotiate to determine the out-
put of the network. A module with the greatest ne-
gotiation strength is allowed to set one of the out-
puts of the entire MANN. To fix all the outputs, the
modules negotiate many times. The architecture of
individual modules is defined through evolutionary
process, whereas the number of modules is prede-
termined.

In contrast to the methods mentioned above, the
work [20] proposes the algorithm which automati-
cally adjusts the number of modules to a problem
and it applies a self–organization to this purpose.
The scheme of inter–module connections still re-
mains the decision of a network designer, whereas
the architecture of individual modules is defined in
the evolutionary way.

The existence of a set of predefined modules is
assumed in [13]. To design a MANN, some mod-
ules are selected from the set, and then somehow
combined together. Selecting modules to the net-
works, determining their optimal number and ad-
justing the topology of inter–module connections to
a problem are performed in the evolutionary way.

Selective application of modules in response to
a given input signal is also presented in [23]. A
modular network has a set of modules at its disposal
and once the network is fed with an input signal
the modules that best match the input are selected,
formed in a layer, and then supplied with the net-
work input. In order to calculate the output signal
of the layer, an integration mechanism is applied,
e.g. outputs of all the selected modules are summed
together. In general, the considered approach can
be applied with respect to any network that can be
decomposed into many layers somehow connected

110 Tomasz Praczyk

with each other. In this case, each layer can be
linked to other set of modules.

In [30, 32], a Genetic Programming (GP) ap-
proach is presented. In this case, the evolution can
optimally shape modular architecture of a network
as well as the inner architecture of the modules
themselves.

Modular variant of EPNet [48] that is also based
on GP and is called M–EPNet is presented in [25].
The authors compare both algorithms on two dis-
tinct classification tasks. The experiments revealed
similar performance of purely modular and purely
monolithic networks in generalization stage and
a better performance of modular networks in the
learning stage.

In Augmenting Modular Neural Networks [36],
which is a generative Neuro–Evolutionary (NE)
method, MANNs expand gradually. At the begin-
ning of the evolutionary process, all networks con-
sist of only input/output modules (or a single mod-
ule). After some time, if the architecture of all
evolved networks is insufficient to effectively per-
form a task, all of them are augmented by one hid-
den module. In the following generations, further
hidden modules are also added and this procedure is
continued until some stopping criterion is satisfied.
In addition to the number of modules, the method
decides about the inner architecture of each module
as well as about inter–module connections.

The efforts to modularize NEAT [41] and its
successor HyperNEAT [19], which are the state–of–
the–art generative NE methods which do not have
special mechanisms for evolving modular ANNs,
are presented in [8, 21,31]. To this end, the authors
apply a connection cost technique which prefers
networks with fewer number of connections, multi–
objective PNSGA algorithm [9] or directly add a
modularity component to the fitness function. The
experiments reported in the above mentioned works
showed that both algorithms are able to evolve
MANNs with regularities.

In [14], the task of the authors was to design a
modular controller for a robot arm capable of work-
ing with different objects. To this end, they also
applied the connection cost technique and pNSGA,
which is a probabilistic version of the popular mul-
tiobjective optimization algorithm NSGA-II [12].
Their experiments revealed that evolutionary pres-

sure to form sparser, more modular networks, can
be beneficial when modeling multiple objects.

A grammatical approach to the evolution of
neural networks is presented in [39]. The algorithm
proposed by the authors, called Modular Grammat-
ical Evolution (MGE), is meant for evolving mod-
ular neural networks with a layered architecture.
It was validated on different classification bench-
marks with different sizes, feature counts, and out-
put class counts. The tests reported in the men-
tioned work showed superiority of MGE in relation
to selected NE algorithms as well as its ability to
evolve simple neural classifiers.

All the papers mentioned above present algo-
rithms dedicated to small or medium–size MANNs
that contain at most a few modules and a few
or at most a dozen of neurons in each module.
Meanwhile, Deep ANNs (DNN) which are typi-
cally composed of many modules and neurons need
a different approach from those presented above.

A typical approach to design DNNs is to man-
ually determine the number of modules, inter–
module connectivity, size of modules and their in-
ner connectivity, and then to apply gradient decent
algorithms or evolutionary techniques to find opti-
mal parameters of the network. An example of such
approach is presented among other things in [?].

Other approaches like MENNDL [49], CMA–
ES [27], CoDeepNEAT [26, 29], and the ones pro-
posed in [1, 2, 42, 47, 50], use gradient descent to
learn DNNs and apply the NE to evolve topology,
hyper–parameters of the networks (e.g. the num-
ber of convolutional layers, skip connections, the
number of kernels in each convolutional layer, ker-
nel size in each convolutional layer), and learning
parameters (e.g. learning rate, batch size).

A similar approach is presented in [17]. In this
case, the NE is applied to evolve topology of a dif-
ferentiable variant of Compositional Pattern Pro-
ducing Network [19] which is then trained with the
use of the gradient descent. The authors show that
their networks can rediscover (approximate) convo-
lutional network architectures.

A separate branch of research on modularity
is inquiring its origins and the influence on natu-
ral and artificial systems. The role of modularity
in the ability to adopt to environmental changes is
considered in [6]. In order to explore this role,

111Tomasz Praczyk

with each other. In this case, each layer can be
linked to other set of modules.

In [30, 32], a Genetic Programming (GP) ap-
proach is presented. In this case, the evolution can
optimally shape modular architecture of a network
as well as the inner architecture of the modules
themselves.

Modular variant of EPNet [48] that is also based
on GP and is called M–EPNet is presented in [25].
The authors compare both algorithms on two dis-
tinct classification tasks. The experiments revealed
similar performance of purely modular and purely
monolithic networks in generalization stage and
a better performance of modular networks in the
learning stage.

In Augmenting Modular Neural Networks [36],
which is a generative Neuro–Evolutionary (NE)
method, MANNs expand gradually. At the begin-
ning of the evolutionary process, all networks con-
sist of only input/output modules (or a single mod-
ule). After some time, if the architecture of all
evolved networks is insufficient to effectively per-
form a task, all of them are augmented by one hid-
den module. In the following generations, further
hidden modules are also added and this procedure is
continued until some stopping criterion is satisfied.
In addition to the number of modules, the method
decides about the inner architecture of each module
as well as about inter–module connections.

The efforts to modularize NEAT [41] and its
successor HyperNEAT [19], which are the state–of–
the–art generative NE methods which do not have
special mechanisms for evolving modular ANNs,
are presented in [8, 21,31]. To this end, the authors
apply a connection cost technique which prefers
networks with fewer number of connections, multi–
objective PNSGA algorithm [9] or directly add a
modularity component to the fitness function. The
experiments reported in the above mentioned works
showed that both algorithms are able to evolve
MANNs with regularities.

In [14], the task of the authors was to design a
modular controller for a robot arm capable of work-
ing with different objects. To this end, they also
applied the connection cost technique and pNSGA,
which is a probabilistic version of the popular mul-
tiobjective optimization algorithm NSGA-II [12].
Their experiments revealed that evolutionary pres-

sure to form sparser, more modular networks, can
be beneficial when modeling multiple objects.

A grammatical approach to the evolution of
neural networks is presented in [39]. The algorithm
proposed by the authors, called Modular Grammat-
ical Evolution (MGE), is meant for evolving mod-
ular neural networks with a layered architecture.
It was validated on different classification bench-
marks with different sizes, feature counts, and out-
put class counts. The tests reported in the men-
tioned work showed superiority of MGE in relation
to selected NE algorithms as well as its ability to
evolve simple neural classifiers.

All the papers mentioned above present algo-
rithms dedicated to small or medium–size MANNs
that contain at most a few modules and a few
or at most a dozen of neurons in each module.
Meanwhile, Deep ANNs (DNN) which are typi-
cally composed of many modules and neurons need
a different approach from those presented above.

A typical approach to design DNNs is to man-
ually determine the number of modules, inter–
module connectivity, size of modules and their in-
ner connectivity, and then to apply gradient decent
algorithms or evolutionary techniques to find opti-
mal parameters of the network. An example of such
approach is presented among other things in [?].

Other approaches like MENNDL [49], CMA–
ES [27], CoDeepNEAT [26, 29], and the ones pro-
posed in [1, 2, 42, 47, 50], use gradient descent to
learn DNNs and apply the NE to evolve topology,
hyper–parameters of the networks (e.g. the num-
ber of convolutional layers, skip connections, the
number of kernels in each convolutional layer, ker-
nel size in each convolutional layer), and learning
parameters (e.g. learning rate, batch size).

A similar approach is presented in [17]. In this
case, the NE is applied to evolve topology of a dif-
ferentiable variant of Compositional Pattern Pro-
ducing Network [19] which is then trained with the
use of the gradient descent. The authors show that
their networks can rediscover (approximate) convo-
lutional network architectures.

A separate branch of research on modularity
is inquiring its origins and the influence on natu-
ral and artificial systems. The role of modularity
in the ability to adopt to environmental changes is
considered in [6]. In order to explore this role,

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

the authors carried out two sets of artificial life ex-
periments in which they measured modularity of
evolved neural networks and programs in response
to changes of tasks they had to perform. The ex-
periments showed strong correlation between mod-
ularity of the evolved agents and their performance
when the tasks of the agents became increasingly
complex.

The work [44] examines the impact of network
size on its modularity and performance. The sim-
ulations performed on three types of networks of
different size (non–modular, non–modular sparsely
connected, and modular; small and large) revealed
that modularity becomes effective as the network
size increases.

Analysis of the interdependencies between net-
work size, modularity and efficiency is continued
in [43]. The authors show that computational effi-
ciency is insufficient for modularity to arise. What
is more, they also demonstrate that even in modular
problems, modular networks are not always more
effective than their monolithic counterparts. Their
experiments revealed that the size of the networks
is a key factor in this case, meaning that small mod-
ular networks can be less computationally efficient
than their non–modular rivals, however, larger mod-
ular networks should be rather more efficient than
the non–modular ones. To obtain modularity in
the networks, the authors simply replicated initially
trained existing neural substructures.

The influence of weight and node–based prun-
ing is investigated in [18]. The experiments carried
out by the authors show that weight–based pruning
performed at the end of the training process makes
networks more modular than random networks and
networks with the same sparsity and distribution of
weights. Moreover, the experiments also revealed
that training combined with node–based pruning
(dropout) contributes to modularity.

In [15], the authors focus on a problem called
catastrophic forgetting which applies to losing pre-
viously acquired skills. They convince that mod-
ularity evolved in neural networks combined with
neuromodulation, which is a type of reinforcement
learning, alleviates catastrophic forgetting effect.
To obtain modular networks they use connection
cost technique.

Modularity in gene regulatory networks which
are modeled as recurrent neural networks is consid-
ered in [16]. The authors show that modularity in
their networks arises when two conditions are met.
First, networks that have been previously trained to
reproduce one activity pattern are trained to attain
previously learned pattern, and additionally, a new
pattern. Each pattern corresponds to a specific ac-
tivity of each gene (or neuron) in the network. Sec-
ond, both patterns must have a common part, and a
different part, meaning that some genes are active
in the same way in both patterns, whereas the re-
maining genes differ in their activity. The authors
explain that modularity in the networks arises in or-
der to reduce the impact of one group of genes on
the other group.

3 Hill Climb Assembler Encoding

HCAE is based on three key components, i.e.
Network Definition Matrix (NDM) which repre-
sents a neural network, Assembler Encoding Pro-
gram (AEP) which operates on NDM, and Evolu-
tionary Algorithm whose task is to produce optimal
AEPs, NDMs, and in consequence, the networks.
All the three components are described below.

3.1 Network Definition Matrix

To represent a neural network, HCAE uses a
matrix called Network Definition Matrix (NDM).
The matrix includes all the parameters of the net-
work, including the weights of inter–neuron con-
nections, bias, etc (see Figure 1). The matrix
which contains non–zero elements above and be-
low the diagonal encodes a recurrent neural network
(RANN), whereas the matrix with the only content
above the diagonal represents a feed–forward net-
work (FFANN).

112 Tomasz Praczyk

0 0.2 0.3 0 -0.7 0.1
-0.9 0 1 -0.5 -1 0.9
0.5 0 0 -0.5 0.3 0.2
0 0.3 0 0.6 0.1 0.5

input neuron

input neuron

output neuron

in
pu

t n
eu

ro
n

in
pu

t n
eu

ro
n

ou
tp

ut
 n

eu
ro

n

bi
as

ty
pe

 o
f

ne
ur

on

IN

IN

IN0.2
0.3

-0.9

in

in

out
1

-0.5

0.5

-0.5

0.3

0.6

-1

-0.7

0.3 0.1

if(abs(type_of_neuron)<=0.5)
then

sigmoid
else

linear

1

2

3 4

hidden
neuron

hi
dd

en

ne
ur

on

Figure 1. The way of encoding ANN in the form
of Network Definition Matrix (NDM) [38]

3.2 Assembler Encoding Program

In HCAE, filling up the matrix, and, in conse-
quence, constructing an ANN is the task of Assem-
bler Encoding Program (AEP) which like an ordi-
nary assembler program consists of a list of oper-
ations and a sequence of data. Each operation im-
plements a fixed algorithm and its role is to mod-
ify a piece of NDM. The operations are run one
after another and their working areas can overlap
which means that modifications made by one oper-
ation can be overwritten by other operations which
are placed further in the program.

Figure 2. Illustration of changes made on NDM by
two different HCAE–operations, p1 – direction of
changes, along rows or columns, p2 – size of holes

(zeros) between subsequent updates, p3, p4 –
starting item in NDM, p5 – size of modified area,

p6 – pointer to starting data item

Algorithm 1. Pseudo–code of HCAE–operation

Input: operation parameters (p), data sequence (d), NDM
Output: NDM
(1) filled ← 0;
(2) where ← p[6];
(3) holes ← 0;
(4) if p[1] mod 2 = 0

(5) foreach k∈< 0..NDM.numberOfColumns)

(6) foreach j∈< 0..NDM.numberOfRows)

(7) NDM[j,k] ← fill(k,j,param,data,filled,where,holes);

(8) end for

(9) end for
(10) else

(11) foreach k∈< 0..NDM.numberOfRows)

(12) foreach j∈< 0..NDM.numberOfColumns)

(13) NDM[k,j] ← fill(j,k,p,d,filled,where,holes);

(14) end for

(15) end for
(16) end if
(17) Return NDM.

The way each operation works depends on the
one hand on its algorithm and on the other hand
on its parameters. Each operation can be fed with
its ”private” parameters, linked exclusively to it, or
with a list of shared parameters concentrated in the
data sequence. Parametrization allows operations
with the same algorithm to work in a different man-
ner, for example, to work in different fragments of
NDM.

The pseudo–code of HCAE operation is given
in Algorithm 1 and Algorithm 2. It directly fills
NDM with values from the data sequence of AEP:
where NDM is updated, and which and how many
data items are used, are determined by operation pa-
rameters. The first parameter indicates the direc-
tion according to which NDM is modified, that is,
whether it is changed along columns or rows (lines
(4) and (10) in Algorithm 1). The second parameter
determines the size of holes between NDM updates,
that is, the number of zeros that separate consecu-
tive updates (line (3) in Algorithm 2). The next two
parameters point out the location in NDM where the
operation starts to work, i.e. they indicate starting
row and column (line (1) in Algorithm 2). The fifth
parameter determines the size of altered NDM area,
in other words, it indicates how many NDM items
are updated (line (1) in Algorithm 2). And the last
sixth parameter points out the location in the se-

113Tomasz Praczyk

0 0.2 0.3 0 -0.7 0.1
-0.9 0 1 -0.5 -1 0.9
0.5 0 0 -0.5 0.3 0.2
0 0.3 0 0.6 0.1 0.5

input neuron

input neuron

output neuron

in
pu

t n
eu

ro
n

in
pu

t n
eu

ro
n

ou
tp

ut
 n

eu
ro

n

bi
as

ty
pe

 o
f

ne
ur

on

IN

IN

IN0.2
0.3

-0.9

in

in

out
1

-0.5

0.5

-0.5

0.3

0.6

-1

-0.7

0.3 0.1

if(abs(type_of_neuron)<=0.5)
then

sigmoid
else

linear

1

2

3 4

hidden
neuron

hi
dd

en

ne
ur

on

Figure 1. The way of encoding ANN in the form
of Network Definition Matrix (NDM) [38]

3.2 Assembler Encoding Program

In HCAE, filling up the matrix, and, in conse-
quence, constructing an ANN is the task of Assem-
bler Encoding Program (AEP) which like an ordi-
nary assembler program consists of a list of oper-
ations and a sequence of data. Each operation im-
plements a fixed algorithm and its role is to mod-
ify a piece of NDM. The operations are run one
after another and their working areas can overlap
which means that modifications made by one oper-
ation can be overwritten by other operations which
are placed further in the program.

Figure 2. Illustration of changes made on NDM by
two different HCAE–operations, p1 – direction of
changes, along rows or columns, p2 – size of holes

(zeros) between subsequent updates, p3, p4 –
starting item in NDM, p5 – size of modified area,

p6 – pointer to starting data item

Algorithm 1. Pseudo–code of HCAE–operation

Input: operation parameters (p), data sequence (d), NDM
Output: NDM
(1) filled ← 0;
(2) where ← p[6];
(3) holes ← 0;
(4) if p[1] mod 2 = 0

(5) foreach k∈< 0..NDM.numberOfColumns)

(6) foreach j∈< 0..NDM.numberOfRows)

(7) NDM[j,k] ← fill(k,j,param,data,filled,where,holes);

(8) end for

(9) end for
(10) else

(11) foreach k∈< 0..NDM.numberOfRows)

(12) foreach j∈< 0..NDM.numberOfColumns)

(13) NDM[k,j] ← fill(j,k,p,d,filled,where,holes);

(14) end for

(15) end for
(16) end if
(17) Return NDM.

The way each operation works depends on the
one hand on its algorithm and on the other hand
on its parameters. Each operation can be fed with
its ”private” parameters, linked exclusively to it, or
with a list of shared parameters concentrated in the
data sequence. Parametrization allows operations
with the same algorithm to work in a different man-
ner, for example, to work in different fragments of
NDM.

The pseudo–code of HCAE operation is given
in Algorithm 1 and Algorithm 2. It directly fills
NDM with values from the data sequence of AEP:
where NDM is updated, and which and how many
data items are used, are determined by operation pa-
rameters. The first parameter indicates the direc-
tion according to which NDM is modified, that is,
whether it is changed along columns or rows (lines
(4) and (10) in Algorithm 1). The second parameter
determines the size of holes between NDM updates,
that is, the number of zeros that separate consecu-
tive updates (line (3) in Algorithm 2). The next two
parameters point out the location in NDM where the
operation starts to work, i.e. they indicate starting
row and column (line (1) in Algorithm 2). The fifth
parameter determines the size of altered NDM area,
in other words, it indicates how many NDM items
are updated (line (1) in Algorithm 2). And the last
sixth parameter points out the location in the se-

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

Algorithm 2. Pseudo–code of fill() [38]

Input: number of column (c), number of row (r), operation parameters (p),
data sequence (d), number of updated items (f),
starting position in data (w), number of holes (h)
Output: new value for NDM item
(1) if f < p[5] and c ≥ p[4] and r ≥ p[3]
(2) f++;
(3) if h = p[2]
(4) h ← 0;
(5) w++;
(6) Return d[w mod d.length];
(7) else
(8) h++;
(9) Return 0.
(10) end if
(11) end if

quence of data from where the operation starts to
take data items and put them into the NDM (line (2)
in Algorithm 1).

3.3 Evolutionary Algorithm

HCAE is a hill–climber whose each step
is made by Cooperative Co–Evolutionary GA
(CCEGA) [33, 34] (see Algorithm 3). A starting
point of the algorithm is a blank network repre-
sented by a blank NDM (line (1)). Then, the net-
work as well as NDM are improved in subsequent
evolutionary runs of CCEGA (line (5)). Each next
run works on the best network/NDM found so far by
all earlier runs (each AEP works on its own copy of
NDM), is interrupted after a specified number of it-
erations without progress (MAX ITER NO PROG),
and delegates outside, to HCAE main loop, the best
network/NDM that evolved within the run (temp-
NDM). If this network/NDM is better than those
generated by earlier CCEGA runs, a next HCAE
step is made – each subsequent network/NDM has
to be better than its predecessor (line (7)).

AEPs evolve according to CCEGA. The algo-
rithm determines: the number of the operations, the
parameters of the operations, the length of the data
sequence, and its content. Each evolved compo-
nent of AEP evolves in a separate population, that
is, an AEP with n operations and the sequence of
data evolves in n+1 populations (see Figure 3).

To construct a complete AEP, NDM, and fi-
nally, a network, the operations and the data are
combined according to the procedure applied in
CCEGA. An individual (for example, an opera-
tion) from the evaluated population is linked to the
best leader individuals from the remaining popu-

lations that evolved in all previous CCEGA itera-
tions. Each population maintains the leader indi-
viduals which are applied as building blocks of all
AEPs constructed during the evolutionary process.
In order to evaluate newborn individuals, they are
combined with the leader individuals from the re-
maining populations [38].

Figure 3. Evolution of AEPs according to
CCEGA. In the figure, the case is presented with

AEP homogeneous in terms of operations: all
operations implement the same algorithm (in the

upper part of the figure). In consequence, the
operations are encoded as a set of parameters:

p1–p4. In addition to the list of operations, AEP
also includes the sequence of data. Each single

component of AEP evolves in a separate
population.

HCAE uses constant–length programs of a
small size. They include at most two operations
and the sequence of data, the number of operations
does not change over time. Such construction of
AEPs affects the structure of CCEGA. AEPs evolve
in two or at most three populations, the number of

114 Tomasz Praczyk

Algorithm 3. Evolution in HCAE

Input: CCEGA parameters, for example crossover probability
Output: Neural network
(1) NDM ← 0;
(2) numberOfIter ← 0;
(3) fitness ← evaluation of NDM;
(4) while numberOfIter < maxEval and fitness < acceptedFitness
(5) tempNDM ← CCEGA.run(NDM,MAX ITER NO PROG);
(6) if tempNDM.fitness > fitness
(7) NDM ← tempNDM;
(8) fitness ← tempNDM.fitness;
(9) end if
(10) numberOfIter ← numberOfIter + 1;
(11) end while
(12) Return Neural network decoded from NDM.

populations is invariable. One population includes
sequences of data, i.e. chromosomes–data, whereas
the remaining populations contain encoded opera-
tions, i.e. chromosomes–operations. The opera-
tions are encoded as integer strings, whereas the
data as real–valued vectors. Both chromosomes–
operations and chromosomes–data are of constant
length [38].

In HCAE, evolution in all the populations takes
place according to a simple Canonical Genetic Al-
gorithm with a tournament selection. The chromo-
somes undergo two classical genetic operators, i.e.
one–point crossover and mutation. The crossover is
performed with a constant probability Pc, whereas
the mutation is adjusted to the current state of the
evolutionary process. Its probability (Pd

m – probabil-
ity of mutation in data sequences, Po

m – probability
of mutation in operations) grows once there is no
progress for a time and it decreases once progress
is noticed [38].

The chromosomes–data and chromosomes–
operations are mutated differently, and it is per-
formed according to Eq. 1 and 2 [38].

dnew =

{
d + randU(−a,a) if randU(0,1)≤ Pd

m

d otherwise
(1)

onew =

o+ randI(−b,b) if randU(0,1)≤ Po
m and

randU(0,1)≥ Po,zero
m

0 if randU(0,1)≤ Po
m and

randU(0,1)≤ Po,zero
m

o otherwise
(2)

where

d – is a gene in the chromosome–data
o – is a gene in the chromosome–operation
randU(−a,a) – is a uniformly distributed random
real value from the range <−a,a >
randI(−b,b) – is a uniformly distributed random
integer value from the range <−b,b >
Po,zero

m – is the probability of the mutated gene to be
zero.

4 Module–oriented mechanisms
and factors affecting modularity

The main goal of the paper is to discover how
to construct neural networks with modular archi-
tecture that does not result from manual network
design, but from the slow spontaneous process of
the evolutionary formation from a single neuron to
more complex structures. Moreover, the goal is not
a modular architecture in itself, but an architecture
that is optimally formed by its perfect fit to the prob-
lem to be solved.

The paper proposes a number of mechanisms
which could contribute to the spontaneous forma-
tion of modular neural networks through the pro-
cess of evolution. Some mechanisms have a nat-
ural basis, while the others are hand-designed net-
work construction procedures which according to
the knowledge of the authors have no counterpart
in the natural world.

In addition, the paper also analyzes the influ-
ence of fluctuations in the environment and the size
of the networks on their modularity.

115Tomasz Praczyk

Algorithm 3. Evolution in HCAE

Input: CCEGA parameters, for example crossover probability
Output: Neural network
(1) NDM ← 0;
(2) numberOfIter ← 0;
(3) fitness ← evaluation of NDM;
(4) while numberOfIter < maxEval and fitness < acceptedFitness
(5) tempNDM ← CCEGA.run(NDM,MAX ITER NO PROG);
(6) if tempNDM.fitness > fitness
(7) NDM ← tempNDM;
(8) fitness ← tempNDM.fitness;
(9) end if
(10) numberOfIter ← numberOfIter + 1;
(11) end while
(12) Return Neural network decoded from NDM.

populations is invariable. One population includes
sequences of data, i.e. chromosomes–data, whereas
the remaining populations contain encoded opera-
tions, i.e. chromosomes–operations. The opera-
tions are encoded as integer strings, whereas the
data as real–valued vectors. Both chromosomes–
operations and chromosomes–data are of constant
length [38].

In HCAE, evolution in all the populations takes
place according to a simple Canonical Genetic Al-
gorithm with a tournament selection. The chromo-
somes undergo two classical genetic operators, i.e.
one–point crossover and mutation. The crossover is
performed with a constant probability Pc, whereas
the mutation is adjusted to the current state of the
evolutionary process. Its probability (Pd

m – probabil-
ity of mutation in data sequences, Po

m – probability
of mutation in operations) grows once there is no
progress for a time and it decreases once progress
is noticed [38].

The chromosomes–data and chromosomes–
operations are mutated differently, and it is per-
formed according to Eq. 1 and 2 [38].

dnew =

{
d + randU(−a,a) if randU(0,1)≤ Pd

m

d otherwise
(1)

onew =

o+ randI(−b,b) if randU(0,1)≤ Po
m and

randU(0,1)≥ Po,zero
m

0 if randU(0,1)≤ Po
m and

randU(0,1)≤ Po,zero
m

o otherwise
(2)

where

d – is a gene in the chromosome–data
o – is a gene in the chromosome–operation
randU(−a,a) – is a uniformly distributed random
real value from the range <−a,a >
randI(−b,b) – is a uniformly distributed random
integer value from the range <−b,b >
Po,zero

m – is the probability of the mutated gene to be
zero.

4 Module–oriented mechanisms
and factors affecting modularity

The main goal of the paper is to discover how
to construct neural networks with modular archi-
tecture that does not result from manual network
design, but from the slow spontaneous process of
the evolutionary formation from a single neuron to
more complex structures. Moreover, the goal is not
a modular architecture in itself, but an architecture
that is optimally formed by its perfect fit to the prob-
lem to be solved.

The paper proposes a number of mechanisms
which could contribute to the spontaneous forma-
tion of modular neural networks through the pro-
cess of evolution. Some mechanisms have a nat-
ural basis, while the others are hand-designed net-
work construction procedures which according to
the knowledge of the authors have no counterpart
in the natural world.

In addition, the paper also analyzes the influ-
ence of fluctuations in the environment and the size
of the networks on their modularity.

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

4.1 Minimal and compact architectures

The first mechanism that derives from the nat-
ural world and which, apart from efficiency, affects
the shape of the evolved neural networks, both nat-
ural and artificial, are the laws of physics and the
desire to minimize the energy used to form and
then maintain a single nerve cell and the entire ner-
vous system. This mechanism is implemented in
the form of evolutionary bias towards properly or-
ganized and compact neural architectures character-
ized by the presence of concentrations of neurons.
This bias takes the form of a pressure to evolve
lightweight architectures with a small number of
neurons and to create architectures with an appro-
priate organization, that is, architectures with short
connections, architectures with connections evenly
distributed among all neurons, or architectures with
densely connected clusters of neurons that are geo-
graphically close to each other. A detailed descrip-
tion of the individual mechanisms is given below:

1. Reward for a small number of connections
(RSNC): This is an equivalent of the connec-
tion cost (CC) mechanism applied, among other
things, in [8, 14, 21], and it simply results in
a pressure to reduce connectivity in neural net-
works. RSNC neglects the organization of neu-
rons in the network. They can be linked in any
way, the only important thing is the pressure to-
wards light architectures. In the experiments re-
ported in the following section RSNC was cal-
culated as follows:

RSNC =
W RSNC

(1+Nc)
(1)

where W RSNC is a weight of reward (the greater
the weight, the greater the pressure to evolve
networks with a small number of connections)
whereas Nc is the number of all connections in
the network.

2. Reward for a small number of outgoing con-
nections (RSNOC): This is a variant of RSNC
which instead of being oriented solely towards
reducing the overall network connectivity, is ori-
ented towards reducing neuron outgoing con-
nections, that is, it is the first mechanism fo-
cused not only on the minimization of architec-
ture but also on appropriate internal network or-
ganization. In RSNC, all that matters is a small

number of connections which can be distributed
over neurons in any way. This means that there
is no strong pressure to form balanced clusters
of neurons loosely connected with other clus-
ters. Some neurons can be isolated from the rest
of the network, whereas others can be linked to
many network regions gluing them together. A
small number of the latter neurons may be posi-
tive for modularity, however, a large number can
make it very difficult to form neuron clusters.
To avoid such problems, RSNOC encourages to
evenly distribute connections over the whole set
of neurons, the networks which include neurons
with many outgoing connections are penalized
(or they are rewarded for a small number of such
neurons). Formally, RSNOC is defined as fol-
lows:

RSNOC =

{
W RSNOC if Nn(Nmax

oc)≤ Nmax
n

W RSNOC

(1+Nn(Nmax
oc)) otherwise

(2)
where W RSNOC is a weight of reward, Nmax

oc is
the maximum acceptable number of neuron out-
going connections, Nn(Nmax

oc) is the number of
neurons for which Noc ≥ Nmax

oc , and Nmax
n is the

maximum number of neurons with at least Nmax
oc

outgoing connections which does not reduce the
reward.

3. Reward for dense concentrations of neighbor-
ing neurons (RDCNN): This is a variant of RSC
which aims to concentrate neurons in dense clus-
ters with short neuron connections. To do so,
it encourages to form tight clusters of connec-
tions in NDMs. It assumes that if there is a con-
nection i → j between two neighboring neurons
(NDM(i, j) ̸= 0), then there should be also con-
nections: (i+ k) → (j + l) ∀k,l∈−1..1. To calcu-
late the reward, RDCNN counts isolated items
in NDM, that is, the non–zero items surrounded
with at least Nmin

0 zeros – the more the items,
the smaller the reward. Formal definition of RD-
CNN is as follows:

RDCNN =
W RDCNN

(1+Ni)
(3)

where W RDCNN is a weight of reward, and Ni is
the number of the isolated items in NDM.

4. Reward for short connections (RSC): This
mechanism is in line with two previous mecha-
nisms because it also aims to reduce the number

116 Tomasz Praczyk

of connections in neural networks. In this case,
however, the reduction applies to long connec-
tions. The objective of such strategy is to form
clusters of neighboring neurons. There are only
few long connections (Nmax

c (Dmax
c)) which are

allowed without impact on the reward. These
connections are intended to be links between re-
mote concentrations of neurons. Formal defini-
tion of RSC is as follows:

RSC =

{
W RSC if Nc(Dmax

c)≤ Nmax
c

W RSC

(1+Nc(Dmax
c)) otherwise

(4)
where W RSC is a weight of reward, Dmax

c is the
maximum acceptable length of neuron connec-
tions, Nc(Dmax

c) is the number of connections
for which Dc ≥ Dmax

c , and Nmax
c is the maximum

number of connections longer or equal to Dmax
c

which does not reduce the reward. Since HCAE
represents each network in the form of NDM
in which each column and row indicates a neu-
ron and its location in 2D space, the length of a
connection between i–th and j–th neuron can be
simply calculated by Dc(i, j) = |i− j|.

4.2 Hand-designed module-oriented
mechanisms

In addition to the pressure to create architec-
tures with densely packed neural matter, the impact
of which can be seen from generation to generation,
the paper also proposes hand-designed mechanisms
that have no natural counterpart, and which also
aim to build compact neural architectures. These
mechanisms are: a new type of neuron, a mecha-
nism of self-regulation of the network size, and a
network construction mechanism based on ready-
made building-blocks consisting of groups of neu-
rons connected to each other. All the mechanisms
are detailed below:

1. Limited number of connections (LNC): This is a
combination of RSNOC and RSC which means
that LNC also has two goals, namely to min-
imize the ”weight” of the overall architecture
and to appropriately organize neurons in the net-
work. In LNC, all neurons are allowed to have
at most Nmax

oc outgoing connections. If a neuron
has more connections, the longest connections
are removed from NDM (see Figure 4).

Figure 4. Example application of LNC: each
neuron has permission to have maximally

Nmax
oc = 3 outgoing connections, adding the

connection ”0.4” from neuron no. 1 to neuron no. 4
removed the longest connection of neuron no. 1,

that is, the connection to neuron no. 6

2. Ready modules (RM): This mechanism forms a
ready low-level module with Nm densely con-
nected neurons and with only one output neu-
ron – see Figure 5. The neuron can be con-
nected with only one hidden neuron from out-
side the module or with only one output neuron
of the network. RM is implemented as a separate
HCAE operation. AEPs applying RM include
only operations that implement RM, they do
not contain operations specified in Algorithm 1.
Since each operation forms a single module in a
selected region of the network, the modules gen-
erated by different operations can overlap which
makes it difficult to create high-level modules.

Figure 5. Example RM module consisting of four
neurons (no. 1 – no. 4), neuron no. 4 is an output
neuron which connects the module with neuron

no. 6

3. Multiplication neuron (MN): MN multiplies in-
puts instead of summing them. It is enough that
only one input to the neuron is equal to zero

117Tomasz Praczyk

of connections in neural networks. In this case,
however, the reduction applies to long connec-
tions. The objective of such strategy is to form
clusters of neighboring neurons. There are only
few long connections (Nmax

c (Dmax
c)) which are

allowed without impact on the reward. These
connections are intended to be links between re-
mote concentrations of neurons. Formal defini-
tion of RSC is as follows:

RSC =

{
W RSC if Nc(Dmax

c)≤ Nmax
c

W RSC

(1+Nc(Dmax
c)) otherwise

(4)
where W RSC is a weight of reward, Dmax

c is the
maximum acceptable length of neuron connec-
tions, Nc(Dmax

c) is the number of connections
for which Dc ≥ Dmax

c , and Nmax
c is the maximum

number of connections longer or equal to Dmax
c

which does not reduce the reward. Since HCAE
represents each network in the form of NDM
in which each column and row indicates a neu-
ron and its location in 2D space, the length of a
connection between i–th and j–th neuron can be
simply calculated by Dc(i, j) = |i− j|.

4.2 Hand-designed module-oriented
mechanisms

In addition to the pressure to create architec-
tures with densely packed neural matter, the impact
of which can be seen from generation to generation,
the paper also proposes hand-designed mechanisms
that have no natural counterpart, and which also
aim to build compact neural architectures. These
mechanisms are: a new type of neuron, a mecha-
nism of self-regulation of the network size, and a
network construction mechanism based on ready-
made building-blocks consisting of groups of neu-
rons connected to each other. All the mechanisms
are detailed below:

1. Limited number of connections (LNC): This is a
combination of RSNOC and RSC which means
that LNC also has two goals, namely to min-
imize the ”weight” of the overall architecture
and to appropriately organize neurons in the net-
work. In LNC, all neurons are allowed to have
at most Nmax

oc outgoing connections. If a neuron
has more connections, the longest connections
are removed from NDM (see Figure 4).

Figure 4. Example application of LNC: each
neuron has permission to have maximally

Nmax
oc = 3 outgoing connections, adding the

connection ”0.4” from neuron no. 1 to neuron no. 4
removed the longest connection of neuron no. 1,

that is, the connection to neuron no. 6

2. Ready modules (RM): This mechanism forms a
ready low-level module with Nm densely con-
nected neurons and with only one output neu-
ron – see Figure 5. The neuron can be con-
nected with only one hidden neuron from out-
side the module or with only one output neuron
of the network. RM is implemented as a separate
HCAE operation. AEPs applying RM include
only operations that implement RM, they do
not contain operations specified in Algorithm 1.
Since each operation forms a single module in a
selected region of the network, the modules gen-
erated by different operations can overlap which
makes it difficult to create high-level modules.

Figure 5. Example RM module consisting of four
neurons (no. 1 – no. 4), neuron no. 4 is an output
neuron which connects the module with neuron

no. 6

3. Multiplication neuron (MN): MN multiplies in-
puts instead of summing them. It is enough that
only one input to the neuron is equal to zero

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

then its output is also equal to zero. This way it
is possible to turn on/off some neurons or even
sub–networks. The networks can include any
number of MNs which are used along with tra-
ditional sigmoid neurons. The number of MNs
and their location in the network depends on
HCAE decisions.

4.3 Repeated use of the same connection
patterns

Copying connectivity schemes in different re-
gions of the network (CCS) by repeated use of the
same information stored in a genotype is a mech-
anism that, in some form, also occurs in the natu-
ral world. CCS is implemented as a double execu-
tion of operation specified in Algorithm 3, each run
is performed in a different region of the network.
This way, it increases network regularity, at least at
a low–level, but in the case of problems with high–
level regularities, it may help with building repeated
modules with the same or similar function. Exam-
ple application of CCS on simple network consist-
ing of six neurons is depicted in Figure 6.

Figure 6. Example application of CCS

4.4 Environmental changes

In addition to internal factors working at the
genotypic level or the level of processes responsi-
ble for forming the networks, there are also external
factors which may affect their shape. Fluctuations
in the environment in which the networks work are
one of such factors. In the paper, the influence of
the environment takes the form of different tasks
performed by the networks (alternating goals) and
different conditions under which these tasks are per-
formed. In the experiments reported further, six dif-
ferent scenarios of environmental changes were ex-

amined. All they assume two tasks to perform by
the networks, i.e. the task no. 1 (hard task) and the
task no. 2 (easy task):

1. Gradual appearance of a new task (GA): Ini-
tially, only the task no. 1 is solved and if the fit-
ness exceeds a threshold, the task no. 2 is gradu-
ally added. The more competent is the network
in performing the harder task, the greater is the
impact of the easier task on the final combined
fitness. The effectiveness of each network is cal-
culated, in this case, as follows:

E(ANN) =
1
2

2

∑
j

I jE j (5)

I j =

{
1 if j = 1
S(E1) otherwise

(6)

where E j is effectiveness of the network ANN
in j–th task, j = 1,2, and S(E1) ∈< 0,1 > is a
function which makes E2 dependent on E1. If
E1 < T , where T is a threshold, than S(E1) = 0,
otherwise it linearly grows to 1 along with the
increase of E1.

2. Quick change in the environment (QC): As
above, the task no. 2 is not considered in the
cumulative effectiveness until fitness exceeds a
threshold. Once the threshold is achieved, the
network receives evaluation for performing both
tasks. It corresponds to binary function S(E1).

3. Simple task switching (STS): The networks per-
form either task no. 1 or task no. 2. Switching
between the tasks is periodical:

E(ANN, i)=

{
E1 if i is iteration assigned to task 1
E2 otherwise

(7)

4. Task switching (TS): The networks perform ei-
ther task no. 1 or tasks no. 1 and 2. Switching
between the tasks is periodical:

E(ANN, i)=

{
E1 if i is iteration assigned to task 1
E1+E2

2 otherwise
(8)

5. Gene activity patterns (GAP): This is an adapta-
tion of a solution suggested in [16]. The authors
show that modularity in their networks arises
when two conditions are met. First, networks

118 Tomasz Praczyk

that have been previously trained to reproduce
one activity pattern are trained to attain previ-
ously learned pattern, and additionally, a new
pattern. Each pattern corresponds to a specific
activity of each gene (or neuron) in the network.
Second, both patterns must have a common part,
and a different part, meaning that some genes are
active in the same way in both patterns, whereas
the remaining genes differ in their activity. The
authors explain that modularity in the networks
arises in order to reduce the impact of one group
of genes on the other group.

In order to implement the above idea, the net-
works, like in QC, are first trained on the task
no. 1 (one activity pattern) and if fitness exceeds
a threshold they are trained on tasks no. 1 and
no. 2 (new activity pattern). Both tasks corre-
spond to their own specific activity of all four
output neurons. However, two output neurons
are common for both tasks and two other neu-
rons are specific for each task. In other words,
two output neurons have the same activity for
the task no. 1 and no. 2, and two other neurons
differ in activity for the task no. 1 and for the
task no. 2.

6. Gene activity patterns after a specified number
of iterations (GAPI): This is a variant of GAP in
which the change of the network task does not
take place after exceeding a fitness threshold but
after a specified number of HCAE iterations.

4.5 Size of networks

Another factor that may affect modularity of the
networks is their size, which is understood in the pa-
per as the maximum allowable number of neurons.
In the natural world, limited resources determine
the size of nature’s creations and enforce the appro-
priate organization of living matter also through its
modularization. The larger the structure, the greater
the need for more efficient use of resources and op-
timal organization of matter. In order to examine
how the size of the networks evolved by HCAE af-
fects their modularity and efficiency, the tests were
performed in which the networks could have a large
number of neurons in relation to the complexity of
the problem. Moreover, the maximum size of the
networks was either infinite and increased gradu-
ally over time, or it was determined in advance and
did not change during evolution.

5 Experiments

The goal of the experiments was twofold.
Firstly, they were a next attempt to discover sources
of modularity. To this end, the mechanisms spec-
ified in the previous section, both already exam-
ined mechanisms and the new ones, different vari-
ants of environmental changes, the size of the net-
works, and their ability to growth were examined
in terms of their influence on the architecture and
efficiency of the neural networks. Secondly, the re-
search also had a more practical goal, which was to
test whether it is possible to increase efficiency of
HCAE through biasing the evolution towards mod-
ular architectures.

The experiments were carried out in three
phases. First, HCAE with inclusion of module–
oriented mechanisms was compared with the origi-
nal variant of the algorithm which does not have any
tools to support modularity. The purpose was to es-
timate how individual mechanisms affect network
modularity and effectiveness, the original HCAE
was the point of reference in this case. Next, a se-
lected mechanism was examined in the conditions
of different environment fluctuations. The influence
of the size of the networks on their modularity and
effectiveness was examined in the last third phase
of the experiments. Furthermore, the ability of the
networks to gradually grow without any limits was
tested in this phase, as a separate potential module–
oriented mechanism.

In all the experiments, the task of the networks
was to solve a modular problem consisting of two
binary classification sub–problems, one simple and
one harder. In both cases, the networks had to split
XY space of size 100x100, x,y ∈<−50,50 >, into
two classes. In the simpler problem, one class was
the area between circles of radius 30 and 60, both
located in the center of the space, whereas the sec-
ond class was the rest of the space. In the harder
problem, both classes formed intertwined spirals
which cannot be linearly separated. A perfect divi-
sion of the space performed by an example network
is depicted in Figure 7.

119Tomasz Praczyk

that have been previously trained to reproduce
one activity pattern are trained to attain previ-
ously learned pattern, and additionally, a new
pattern. Each pattern corresponds to a specific
activity of each gene (or neuron) in the network.
Second, both patterns must have a common part,
and a different part, meaning that some genes are
active in the same way in both patterns, whereas
the remaining genes differ in their activity. The
authors explain that modularity in the networks
arises in order to reduce the impact of one group
of genes on the other group.

In order to implement the above idea, the net-
works, like in QC, are first trained on the task
no. 1 (one activity pattern) and if fitness exceeds
a threshold they are trained on tasks no. 1 and
no. 2 (new activity pattern). Both tasks corre-
spond to their own specific activity of all four
output neurons. However, two output neurons
are common for both tasks and two other neu-
rons are specific for each task. In other words,
two output neurons have the same activity for
the task no. 1 and no. 2, and two other neurons
differ in activity for the task no. 1 and for the
task no. 2.

6. Gene activity patterns after a specified number
of iterations (GAPI): This is a variant of GAP in
which the change of the network task does not
take place after exceeding a fitness threshold but
after a specified number of HCAE iterations.

4.5 Size of networks

Another factor that may affect modularity of the
networks is their size, which is understood in the pa-
per as the maximum allowable number of neurons.
In the natural world, limited resources determine
the size of nature’s creations and enforce the appro-
priate organization of living matter also through its
modularization. The larger the structure, the greater
the need for more efficient use of resources and op-
timal organization of matter. In order to examine
how the size of the networks evolved by HCAE af-
fects their modularity and efficiency, the tests were
performed in which the networks could have a large
number of neurons in relation to the complexity of
the problem. Moreover, the maximum size of the
networks was either infinite and increased gradu-
ally over time, or it was determined in advance and
did not change during evolution.

5 Experiments

The goal of the experiments was twofold.
Firstly, they were a next attempt to discover sources
of modularity. To this end, the mechanisms spec-
ified in the previous section, both already exam-
ined mechanisms and the new ones, different vari-
ants of environmental changes, the size of the net-
works, and their ability to growth were examined
in terms of their influence on the architecture and
efficiency of the neural networks. Secondly, the re-
search also had a more practical goal, which was to
test whether it is possible to increase efficiency of
HCAE through biasing the evolution towards mod-
ular architectures.

The experiments were carried out in three
phases. First, HCAE with inclusion of module–
oriented mechanisms was compared with the origi-
nal variant of the algorithm which does not have any
tools to support modularity. The purpose was to es-
timate how individual mechanisms affect network
modularity and effectiveness, the original HCAE
was the point of reference in this case. Next, a se-
lected mechanism was examined in the conditions
of different environment fluctuations. The influence
of the size of the networks on their modularity and
effectiveness was examined in the last third phase
of the experiments. Furthermore, the ability of the
networks to gradually grow without any limits was
tested in this phase, as a separate potential module–
oriented mechanism.

In all the experiments, the task of the networks
was to solve a modular problem consisting of two
binary classification sub–problems, one simple and
one harder. In both cases, the networks had to split
XY space of size 100x100, x,y ∈<−50,50 >, into
two classes. In the simpler problem, one class was
the area between circles of radius 30 and 60, both
located in the center of the space, whereas the sec-
ond class was the rest of the space. In the harder
problem, both classes formed intertwined spirals
which cannot be linearly separated. A perfect divi-
sion of the space performed by an example network
is depicted in Figure 7.

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

(a) (b)

Figure 7. Correct division of the input space into
two classes: (a) – simpler sub–problem, (b) –

harder sub–problem

In order to make neural networks capable of solving
the above–mentioned modular problem they con-
tained two input, four output and maximally ninety
four hidden neurons. The inputs were fed with (x,y)
coordinates of K=196 learning data points, whereas
outputs were responsible for identification, one out-
put for one class. All neurons in the networks used
sigmoid activation function.

In the tests with MN, the neural networks had a
different architecture from the one described above.
Instead of two inputs and four outputs they had
three inputs and two outputs. The extra input was
used to indicate the problem being currently solved:
0 meant the harder problem whereas 1 meant the
simpler one. In order to solve both sub–problems,
the network had to be run twice. As before, the out-
puts corresponded to two classes.

A different network architecture was also ap-
plied in the tests with GAP and GAPI. In this case,
the networks also had three inputs, as the networks
applied during the tests with MN, and four outputs.
According to GAP/GAPI each sub–problem corre-
sponded to other activity pattern of four output neu-
rons.

In the first and third phase of the experiments,
the effectiveness of each evolved neural network
was measured as follows:

E(ANN) =
1
2

2

∑
j

E j =
1
2

2

∑
j

(
S j +

1

1+∑Wj
i Ei

j

)

(9)

Ei
j =

100 if o2 j−2 = o2 j−1

1−o2 j−1 +o2 j−2 if c(i) = 1 and o2 j−2 ̸= o2 j−1

1−o2 j−2 +o2 j−1 otherwise
(10)

where

S j – is the number of correct classifications in j–th
sub–problem,
Wj – is the number of wrong classifications in j–th
sub–problem,
Ei

j – is an error in i–th learning point, in j–th sub–
problem,
c(i) – is a class of i–th data point, c(i) = 0 for class
no. 0 and c(i) = 1 for class no. 1,
ok – is k–th output neuron, the outputs o0, o1 are
assigned to sub–problem no. 1 whereas the outputs
no. o2, o3 to sub–problem no. 2.

In turn, in the second phase, the effectiveness
depended on the environmental change scenario
and algorithm iteration. In the course of the evo-
lutionary process, the effectiveness was measured
according to equations (5)–(8), however, in order to
calculate the final effectiveness of the network, (9)
was applied.

Since in the tests with GAP and GAPI each task
corresponded to an activity pattern of four output
neurons, the effectiveness of each network in a sin-
gle data point Ei

j was measured in this case as fol-
lows:

Ei
1 =

100 if o0 = o1

1−o1 +o0 +o2 +o3 if c(i) = 1 and o0 ̸= o1

1−o0 +o1 +o2 +o3 otherwise

(11)

Ei
2 =

100 if o0 = o1 or o2 = o3

1−o1 +o0 +1−o3 +o2 if c(i) = 1 and o0 ̸= o1,o2 ̸= o3

1−o0 +o1 +1−o2 +o3 otherwise
(12)

The outputs no. 0 and 1 corresponded to a com-
mon part of activity patters for both sub–problems,
whereas, the outputs no. 2 and 3 were specific for
each sub–problem.

During the evolutionary process, the networks
received fitness F for their effectiveness E, and in
some cases, also for following the restrictions im-
posed on their architecture:

F(ANN) = E(ANN)+R(ANN) (13)

where R = RSNC,RSNOC,RSC,RDCNN for the
module–oriented mechanisms no. 1,2,3,5 and R = 0
in the remaining cases.

After the learning process, each evolutionary
run was represented by the highest–fitness neural

120 Tomasz Praczyk

network that was then evaluated in terms of both the
effectiveness E and the modularity M ∈< 0,1 >.
The modularity was measured according to the
Louvain [5] method for community detection. Af-
terwards, in order to characterize each network by a
single cumulative measure of both the effectiveness
and modularity, the following formula was applied:

EM(ANN) =
E<0,1>(ANN)+M(ANN)

2
(14)

E<0,1>(ANN) =

0 if E(ANN)< 160
0.25 if E(ANN)< 170
0.5 if E(ANN)< 180
0.75 if E(ANN)< 190
1 otherwise

(15)

Note that E = 190 means 2x190 data points
(96%) correctly classified in both sub–problems.

In all the examined cases, the first step was to
find parameters which maximized fitness F . For
each parameter setting the evolutionary process was
run fifty times and it always ended after 4 million
iterations. The results presented in the following
sections correspond to the most fit settings.

5.1 Results in first phase of experiments

The results of the first phase of the experi-
ments are summarized in Tab. 1 and Figure 8.
They include results averaged over fifty runs of
each module-oriented mechanism. As already men-
tioned each run was represented by the highest–
fitness neural network that was then evaluated in
terms of both the effectiveness E and modularity
M ∈< 0,1 >. In addition to EM, E<0,1>, and M
the table also includes coefficient C which indicates
sparsity of the evolved networks and is measured
as follows: C(ANN) = Nc

NAll
100%, where NAll is the

number of all possible connections in the network.

The table shows that RM which forms neural
networks through putting together small modules
consisting of Nm = 20 densely connected neurons
and one output neuron, is the only mechanism in
which the increase in modularity entails an increase
in efficiency. EM, in this case, clearly shows that
networks evolved by HCAE–RM are not only ef-
fective but also modular. From the point of view
of HCAE itself, it is also important that regard-
less of modularity, RM leads to an increase in al-
gorithm efficiency. What is more, even though the

networks are composed of overlapping densely con-
nected modules, as a whole they are characterized
by a high sparsity compared to the networks pro-
duced by the original HCAE.

The decomposition into modules made by the
Louvain algorithm also reveals that HCAE–RM
evolves architectures in which the modules con-
stitute sequentially connected layers, each with a
dense inner connectivity. The assignment of neu-
rons to modules depends on the distance of the neu-
ron to the input. Neurons closest to the input form
the first layer, whereas the neurons situated further
constitute subsequent layers. In majority of cases,
the layers are connected only with the neighbors
– the connections between distant layers are either
very rare or none at all. Example networks gener-
ated by HCAE–RM are presented in Figure 9.

(a)

(b)

Figure 9. Example networks evolved by
HCAE–RM, network (a) – four modules, network

(b) – three modules determined by Louvain
algorithm

RSNOC and RSC are the mechanisms which also
contributed to the increase in modularity, how-
ever, without any positive effect on the effectiveness
which either decreased or remained, more or less, at
the same level. As in the case of RM, the networks
are sparser in terms of connectivity than networks

121Tomasz Praczyk

network that was then evaluated in terms of both the
effectiveness E and the modularity M ∈< 0,1 >.
The modularity was measured according to the
Louvain [5] method for community detection. Af-
terwards, in order to characterize each network by a
single cumulative measure of both the effectiveness
and modularity, the following formula was applied:

EM(ANN) =
E<0,1>(ANN)+M(ANN)

2
(14)

E<0,1>(ANN) =

0 if E(ANN)< 160
0.25 if E(ANN)< 170
0.5 if E(ANN)< 180
0.75 if E(ANN)< 190
1 otherwise

(15)

Note that E = 190 means 2x190 data points
(96%) correctly classified in both sub–problems.

In all the examined cases, the first step was to
find parameters which maximized fitness F . For
each parameter setting the evolutionary process was
run fifty times and it always ended after 4 million
iterations. The results presented in the following
sections correspond to the most fit settings.

5.1 Results in first phase of experiments

The results of the first phase of the experi-
ments are summarized in Tab. 1 and Figure 8.
They include results averaged over fifty runs of
each module-oriented mechanism. As already men-
tioned each run was represented by the highest–
fitness neural network that was then evaluated in
terms of both the effectiveness E and modularity
M ∈< 0,1 >. In addition to EM, E<0,1>, and M
the table also includes coefficient C which indicates
sparsity of the evolved networks and is measured
as follows: C(ANN) = Nc

NAll
100%, where NAll is the

number of all possible connections in the network.

The table shows that RM which forms neural
networks through putting together small modules
consisting of Nm = 20 densely connected neurons
and one output neuron, is the only mechanism in
which the increase in modularity entails an increase
in efficiency. EM, in this case, clearly shows that
networks evolved by HCAE–RM are not only ef-
fective but also modular. From the point of view
of HCAE itself, it is also important that regard-
less of modularity, RM leads to an increase in al-
gorithm efficiency. What is more, even though the

networks are composed of overlapping densely con-
nected modules, as a whole they are characterized
by a high sparsity compared to the networks pro-
duced by the original HCAE.

The decomposition into modules made by the
Louvain algorithm also reveals that HCAE–RM
evolves architectures in which the modules con-
stitute sequentially connected layers, each with a
dense inner connectivity. The assignment of neu-
rons to modules depends on the distance of the neu-
ron to the input. Neurons closest to the input form
the first layer, whereas the neurons situated further
constitute subsequent layers. In majority of cases,
the layers are connected only with the neighbors
– the connections between distant layers are either
very rare or none at all. Example networks gener-
ated by HCAE–RM are presented in Figure 9.

(a)

(b)

Figure 9. Example networks evolved by
HCAE–RM, network (a) – four modules, network

(b) – three modules determined by Louvain
algorithm

RSNOC and RSC are the mechanisms which also
contributed to the increase in modularity, how-
ever, without any positive effect on the effectiveness
which either decreased or remained, more or less, at
the same level. As in the case of RM, the networks
are sparser in terms of connectivity than networks

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

Table 1. Results of the first phase of experiments

HCAE RSNC RSNOC RDCNN RSC LNC RM CCS MN
Avg. EM 0.5 0.5 0.53 0.5 0.52 0.28 0.7 0.45 0.34
Std. EM 0.03 0.048 0.042 0.038 0.04 0.059 0.04 0.047 0.043
Avg. E<0,1> 0.83 0.8 0.8 0.82 0.79 0.15 0.87 0.72 0.43
Std. E<0,1> 0.03 0.048 0.042 0.038 0.04 0.059 0.04 0.047 0.043
Avg. M 0.18 0.21 0.26 0.18 0.27 0.41 0.53 0.2 0.25
Std. M 0.011 0.009 0.013 0.011 0.009 0.16 0.012 0.012 0.013
Avg. C[%] 42 30 28 42 20 8 25 39 28
Std. C[%] 1.7 1.3 1.5 1.5 1 0.8 0.5 1.8 1.6

Figure 8. Average results in first phase of experiments

evolved by the original HCAE. In both cases, the
highest fitness was achieved for the slightest pres-
sure on reducing the number of connections. Any
increase in the pressure resulted in an increase in
modularity and a decrease in efficiency. There was
not even a single case which would combine a high
modularity and a high efficiency.

As regards the network architectures, the Lou-
vain algorithm often splits them into a greater num-
ber of modules than in the case of RM. What is
more, it is difficult to determine any rule of assign-
ing neurons to modules. The assignments are not so
chaotic as in the original HCAE, however, they of-
ten combine together distant neurons which rather
did not take place in RM.

RSNC which is a counterpart of the connec-
tion cost mechanism, in spite of lighter architec-
tures which were generated in this case, practically
did not have effect on network modularity and ef-
fectiveness. As above, the increase in the network
sparsity goes hand in hand with a greater modular-
ity and a lower efficiency. The network architec-
tures were, in this case, similar to those generated
by RSNOC and RSC.

RDCNN which is focused on clustering the
neighboring neurons without any bias towards spar-
sity achieved, in principle, identical results as the
original HCAE. The only thing that differs both ap-
proaches is the architecture of the networks. In the
case of RDCNN, they are more like RSNOC and
RSC architectures than those evolved by HCAE.

The remaining mechanisms examined in this
phase significantly decrease effectiveness of the
original algorithm. LNC generates very small net-
works which turned out to be insufficient to solve
the problem. CCS doubles actions of HCAE which
also appeared to be disadvantageous solution, at
least, in the case of the considered modular prob-
lem. The same applies to MN which was unable
to divide the networks into effectively cooperating
modules.

5.2 Results in second phase of experiments

In order to test the influence of different forms
of environmental fluctuations on network modular-
ity/efficiency, RSNOC was used as a point of refer-
ence for all results obtained in this phase.

122 Tomasz Praczyk

The results of this phase in the form of aver-
ages calculated for fifty runs of each HCAE variant
with different scheme of environmental changes are
given in Tab. 2 and Figure 10. They generally do
not confirm earlier observations of other researchers
that environmental changes positively affect mod-
ularity. The only case of the modularity increase,
compared with RSNOC, is noticed for STS. How-
ever, a higher modularity, in this case, is rather due
to a high sparsity of the networks, what is more, it
goes hand in hand with very poor effectiveness.

Table 2. Results of the second phase of
experiments

GA QC STS TS GAP GAPI
Avg. EM 0.27 0.52 0.21 0.48 0.35 0.45
Std. EM 0.029 0.017 0.007 0.021 0.033 0.023
Avg. E<0,1> 0.29 0.75 0 0.68 0.42 0.65
Std. E<0,1> 0.062 0.035 0 0.048 0.077 0.052
Avg. M 0.25 0.26 0.43 0.29 0.29 0.25
Std. M 0.011 0.01 0.014 0.015 0.016 0.01
Avg. C[%] 29 27 9 24 23 28
Std. C[%] 1.1 1 0.7 1.4 2.2 1.5

As it appeared, such result of STS is an effect
of forgetting previously learned skills while learn-
ing new skills. The interneuron connections use-
ful for one task were destroyed while learning the
new task. The longer the break in learning a sin-
gle task was, the worst the cumulative effective-
ness also was. The best effectiveness of STS was
achieved for very short intervals between the tasks.

The result of STS was improved in TS, which
according to the assumptions should build skills in
one task and gradually add skills in another task
without forgetting previously acquired skills. Un-
fortunately, again, it was not possible to improve the
modularity and efficiency compared to RSNOC.

One–time change of the environmental condi-
tions applied in the remaining scenarios either de-
teriorates results or remains them at a more or less
the same level compared to RSNOC. In this case,
a better solution was a drastic immediate change of
the conditions than a gradual change. As it turned
out the gradual change applied in GA extended the
process of adjusting to new conditions with the con-
sequence that this process often did not completed
up to the last iteration of the algorithm which dis-
advantageously affected the final effectiveness.

Figure 10. Average results in second phase of
experiments

It was also impossible to repeat the results presented
in [16]. Both GAP and GAPI which are an adapta-
tion of the solution proposed in [16] produce net-
works which are less effective and similar in terms
of the modularity to the networks evolved according
to RSNOC.

Table 3. Results of the third phase of experiments

Gradual 300
Avg. EM 0.55 0.6
Std. EM 0.018 0.017
Avg. E<0,1> 0.8 0.84
Std. E<0,1> 0.037 0.035
Avg. M 0.3 0.38
Std. M 0.01 0.01
Avg. C[%] 13 5
Std. C[%] 0.8 0.7

5.3 Results in third phase of experiments

In this phase, again, the networks evolved ac-
cording to RSNOC. However, in contrast to all the
previous tests, the networks were allowed to con-
tain more neurons. In the first and second phase,
the networks could have maximum 100 neurons. In
this phase, they could either grow infinitely or have
maximum 300 neurons. In HCAE, limitations on
the number of neurons result from the size of the
matrix NDM which represents the networks. The
final number of neurons is always a decision of
HCAE, however, it cannot be greater than the num-
ber of rows in NDM.

123Tomasz Praczyk

The results of this phase in the form of aver-
ages calculated for fifty runs of each HCAE variant
with different scheme of environmental changes are
given in Tab. 2 and Figure 10. They generally do
not confirm earlier observations of other researchers
that environmental changes positively affect mod-
ularity. The only case of the modularity increase,
compared with RSNOC, is noticed for STS. How-
ever, a higher modularity, in this case, is rather due
to a high sparsity of the networks, what is more, it
goes hand in hand with very poor effectiveness.

Table 2. Results of the second phase of
experiments

GA QC STS TS GAP GAPI
Avg. EM 0.27 0.52 0.21 0.48 0.35 0.45
Std. EM 0.029 0.017 0.007 0.021 0.033 0.023
Avg. E<0,1> 0.29 0.75 0 0.68 0.42 0.65
Std. E<0,1> 0.062 0.035 0 0.048 0.077 0.052
Avg. M 0.25 0.26 0.43 0.29 0.29 0.25
Std. M 0.011 0.01 0.014 0.015 0.016 0.01
Avg. C[%] 29 27 9 24 23 28
Std. C[%] 1.1 1 0.7 1.4 2.2 1.5

As it appeared, such result of STS is an effect
of forgetting previously learned skills while learn-
ing new skills. The interneuron connections use-
ful for one task were destroyed while learning the
new task. The longer the break in learning a sin-
gle task was, the worst the cumulative effective-
ness also was. The best effectiveness of STS was
achieved for very short intervals between the tasks.

The result of STS was improved in TS, which
according to the assumptions should build skills in
one task and gradually add skills in another task
without forgetting previously acquired skills. Un-
fortunately, again, it was not possible to improve the
modularity and efficiency compared to RSNOC.

One–time change of the environmental condi-
tions applied in the remaining scenarios either de-
teriorates results or remains them at a more or less
the same level compared to RSNOC. In this case,
a better solution was a drastic immediate change of
the conditions than a gradual change. As it turned
out the gradual change applied in GA extended the
process of adjusting to new conditions with the con-
sequence that this process often did not completed
up to the last iteration of the algorithm which dis-
advantageously affected the final effectiveness.

Figure 10. Average results in second phase of
experiments

It was also impossible to repeat the results presented
in [16]. Both GAP and GAPI which are an adapta-
tion of the solution proposed in [16] produce net-
works which are less effective and similar in terms
of the modularity to the networks evolved according
to RSNOC.

Table 3. Results of the third phase of experiments

Gradual 300
Avg. EM 0.55 0.6
Std. EM 0.018 0.017
Avg. E<0,1> 0.8 0.84
Std. E<0,1> 0.037 0.035
Avg. M 0.3 0.38
Std. M 0.01 0.01
Avg. C[%] 13 5
Std. C[%] 0.8 0.7

5.3 Results in third phase of experiments

In this phase, again, the networks evolved ac-
cording to RSNOC. However, in contrast to all the
previous tests, the networks were allowed to con-
tain more neurons. In the first and second phase,
the networks could have maximum 100 neurons. In
this phase, they could either grow infinitely or have
maximum 300 neurons. In HCAE, limitations on
the number of neurons result from the size of the
matrix NDM which represents the networks. The
final number of neurons is always a decision of
HCAE, however, it cannot be greater than the num-
ber of rows in NDM.

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

Figure 11. Average results in third phase of
experiments

(a)

(b)

Figure 12. Example networks evolved by
HCAE–300, network (a) – five modules, network

(b) – four modules determined by Louvain
algorithm

In the case of the growth of the networks,
NDMs enlarged their size during the evolution
which corresponded to the increase of the maxi-
mum number of neurons which was allowed at a
given stage of the evolutionary process. The change
of the size was gradual and it took place after a def-
inite number of HCAE iterations without progress.
The initial maximum number of neurons was equal
to 50. The results of this phase are given in Tab. 3
and Figure 11.

They, generally, show a slight increase in all cri-
teria compared to RSNOC. The networks encoded
in larger NDMs were more modular, more effective
and very sparse. Such result is in line with results
of other researchers and it confirms the key role of
the scale in the process of evolving modular neu-
ral networks. The enlarged NDMs provide much
more space for HCAE programs which have more
options for forming modules than the programs op-
erating on smaller matrices.

Despite enlarged NDMs, even three times, the
number of connections did not increase proportion-
ally to the new size of the matrices. The average
number of connections for RSNOC, Gradual, and
300 was as follows: 1372, 1574, 2023. Example
networks evolved in this phase are depicted in Fig-
ure 12.

A slight number of connections in relation the
maximum number is due to RSNOC mechanism
applied during the evolutionary process. Combin-
ing this mechanism with extended space of possible
neural networks seems to be the main driver of im-
proved modularity and efficiency of the networks in
this phase of the experiments.

6 Summary

The paper deals with the issue of modularity
of neural networks designed in the evolutionary
way by means of a generative algorithm called Hill
Climb Assembler Encoding. However, modularity
is not an end in itself. The goal of the paper is to
find mechanisms which lead to both modularity and
efficiency.

In the paper, a number of module–oriented
mechanisms are proposed. In addition to mecha-
nisms suggested earlier by other researchers, new
mechanisms are also proposed and examined like
outgoing connection cost, connection length cost,
inter–neuron distance cost, the ability to growth of
the networks, assembling the networks from small
evolutionary formed modules, grouping neurons in
densely packed clusters, replicating neuron concen-
trations in different network locations, and a new
type of neuron whose task is to split the networks
into separate clusters.

Apart from the above–mentioned mechanisms,
the influence of the network size and fluctuations

124 Tomasz Praczyk

in the environment on network modularity and effi-
ciency was also examined.

The experiments reported in the paper revealed
positive impact of the connection cost mechanism
on the combined modularity/efficiency. For small
networks, the impact is hardly noticeable, however,
it increases for larger networks. The outgoing con-
nection cost (RSNOC) and connection length cost
(RSC) turned out to be slightly more effective than
the original solution (RSNC) that is oriented to-
wards reducing the overall network connectivity.

The size of the space of possible neural solu-
tions is a next key factor that decides about mod-
ularity/efficiency. A smaller space represented by
smaller matrices NDM results in a greater density of
connections and neurons and it is not conducive to
arising separate loosely connected modules. There
is simply no room for spreading neurons over a
larger space. In turn, larger matrices make it possi-
ble to locate clusters of neurons far away from each
other which seems to be very helpful in generating
cooperating modules.

However, extending the matrices cannot be used
in isolation. In order for modular/efficient neural
networks to evolve, the connection cost must be ap-
plied as well. The lack of this mechanism results in
heavier architectures in which it is difficult to form
the modules.

The experiments also revealed that larger mod-
ular/effective networks can be successfully made
up of small densely connected modules with only
one output neuron (RM mechanism). As it turned
out, the application of this mechanism produced the
best results out of all examined solutions, includ-
ing the original HCAE. Majority of networks with
small modules incorporated were very effective as
well as modular. What is more, most of them had a
very interesting architecture with sequentially con-
nected modules and with very rare connections be-
tween distant modules.

The remaining mechanisms along with the envi-
ronmental changes either resulted in noticeable de-
crease in efficiency or had no serious influence on
the achieved results. This is particularly surprising
concerning the environmental changes which are
commonly regarded as one of key factors leading
to modularity.

Acknowledgements

The paper is supported by Polish Ministry of
Defense within the framework of the program en-
titled ”Research Grant”.

References
[1] S. Ahmadian, S. Jalali, S. Islam, A. Khos-

ravi, E. Fazli, and S. Nahavandi. A novel
deep neuroevolution-based image classification
method to diagnose coronavirus disease (covid-
19). Comput Biol Med., (139:104994), 2021.

[2] A. Baldominos, Y. Saez, and P. Isasi. Evolution-
ary convolutional neural networks: an applica-
tion to handwriting recognition. Neurocomputing,
283:38–52, 2018.

[3] C.Y. Baldwin and K.B. Clark. Design Rules: The
power of modularity. Chapter 3: What Is Modu-
larity? MIT Press, 2018.

[4] A. Billard and M. J. Mataric. Learning hu-
man movements by imitation: evaluation of a
biologically inspired connectionist architecture.
Robotics and Autonomous Systems, 941:1–16,
2001.

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics
Theory and Experiment, 10:10008, 2008.

[6] R. Calabretta and J. Neirotti. Adaptive agents in
changing environments, the role of modularity.
Neural Process Lett, 42:257–274, 2015.

[7] M. Carcenac. A modular neural network applied
to image transformation and mental images. Neu-
ral Computing and Applications, 17:549–568,
2008.

[8] J. Clune, B.E. Beckmann, P.K. McKinley, and C.
Ofria. Investigating whether hyperneat produces
modular neural networks. In Proceedings of the
12th annual conference on Genetic and evolution-
ary computation, pages 635–642, 2010.

[9] J. Clune, J-B. Mouret, and H. Lipson. The evo-
lutionary origins of modularity. In Proceedings of
the Royal Society B, 2013.

[10] [10] A.S. Cofino, J.M. Gutierrez, and M.L.
Ivanissevich. Evolving modular networks with
genetic algorithms: application to nonlinear time
series. Expert Systems, 21(4):208–216, 2004.

[11] Y. J. Cruz, M. Rivas, R. Quiza, A. Villalonga, R.
E. Haber, and G. Beruvides. Ensemble of convo-
lutional neural networks based on an evolutionary

125Tomasz Praczyk

in the environment on network modularity and effi-
ciency was also examined.

The experiments reported in the paper revealed
positive impact of the connection cost mechanism
on the combined modularity/efficiency. For small
networks, the impact is hardly noticeable, however,
it increases for larger networks. The outgoing con-
nection cost (RSNOC) and connection length cost
(RSC) turned out to be slightly more effective than
the original solution (RSNC) that is oriented to-
wards reducing the overall network connectivity.

The size of the space of possible neural solu-
tions is a next key factor that decides about mod-
ularity/efficiency. A smaller space represented by
smaller matrices NDM results in a greater density of
connections and neurons and it is not conducive to
arising separate loosely connected modules. There
is simply no room for spreading neurons over a
larger space. In turn, larger matrices make it possi-
ble to locate clusters of neurons far away from each
other which seems to be very helpful in generating
cooperating modules.

However, extending the matrices cannot be used
in isolation. In order for modular/efficient neural
networks to evolve, the connection cost must be ap-
plied as well. The lack of this mechanism results in
heavier architectures in which it is difficult to form
the modules.

The experiments also revealed that larger mod-
ular/effective networks can be successfully made
up of small densely connected modules with only
one output neuron (RM mechanism). As it turned
out, the application of this mechanism produced the
best results out of all examined solutions, includ-
ing the original HCAE. Majority of networks with
small modules incorporated were very effective as
well as modular. What is more, most of them had a
very interesting architecture with sequentially con-
nected modules and with very rare connections be-
tween distant modules.

The remaining mechanisms along with the envi-
ronmental changes either resulted in noticeable de-
crease in efficiency or had no serious influence on
the achieved results. This is particularly surprising
concerning the environmental changes which are
commonly regarded as one of key factors leading
to modularity.

Acknowledgements

The paper is supported by Polish Ministry of
Defense within the framework of the program en-
titled ”Research Grant”.

References
[1] S. Ahmadian, S. Jalali, S. Islam, A. Khos-

ravi, E. Fazli, and S. Nahavandi. A novel
deep neuroevolution-based image classification
method to diagnose coronavirus disease (covid-
19). Comput Biol Med., (139:104994), 2021.

[2] A. Baldominos, Y. Saez, and P. Isasi. Evolution-
ary convolutional neural networks: an applica-
tion to handwriting recognition. Neurocomputing,
283:38–52, 2018.

[3] C.Y. Baldwin and K.B. Clark. Design Rules: The
power of modularity. Chapter 3: What Is Modu-
larity? MIT Press, 2018.

[4] A. Billard and M. J. Mataric. Learning hu-
man movements by imitation: evaluation of a
biologically inspired connectionist architecture.
Robotics and Autonomous Systems, 941:1–16,
2001.

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics
Theory and Experiment, 10:10008, 2008.

[6] R. Calabretta and J. Neirotti. Adaptive agents in
changing environments, the role of modularity.
Neural Process Lett, 42:257–274, 2015.

[7] M. Carcenac. A modular neural network applied
to image transformation and mental images. Neu-
ral Computing and Applications, 17:549–568,
2008.

[8] J. Clune, B.E. Beckmann, P.K. McKinley, and C.
Ofria. Investigating whether hyperneat produces
modular neural networks. In Proceedings of the
12th annual conference on Genetic and evolution-
ary computation, pages 635–642, 2010.

[9] J. Clune, J-B. Mouret, and H. Lipson. The evo-
lutionary origins of modularity. In Proceedings of
the Royal Society B, 2013.

[10] [10] A.S. Cofino, J.M. Gutierrez, and M.L.
Ivanissevich. Evolving modular networks with
genetic algorithms: application to nonlinear time
series. Expert Systems, 21(4):208–216, 2004.

[11] Y. J. Cruz, M. Rivas, R. Quiza, A. Villalonga, R.
E. Haber, and G. Beruvides. Ensemble of convo-
lutional neural networks based on an evolutionary

EMERGING MODULARITY DURING THE EVOLUTION OF . . .

algorithm applied to an industrial welding pro-
cess. Computers in Industry, 133:103530, 2021.

[12] K. Deb, A. Pratap, S. Agarwal, , and T. Meyari-
van. A fast and elitist multiobjective genetic al-
gorithm: NSGA–II. IEEE Transactions on Evolu-
tionary Computation, 6(2):182–197, 2002.

[13] S. Doncieux and J. Meyer. Evolving modular neu-
ral networks to solve challenging control prob-
lems. In Proceedings of the Fourth International
ICSC Symposium on Engineering of Intelligent
Systems, 2004.

[14] K. O. Ellefsen and J. Torresen. Evolving neural
networks with multiple internal models. In Pro-
ceedings of the 14th European Conference on
Artificial Life ECAL 2017, volume 14, pages
138–145, 2017.

[15] K.O. Ellefsen, J-B. Mouret, and J. Clune. Neural
modularity helps organisms evolve to learn new
skills without forgetting old skills. PLoS Compu-
tational Biology, 11(4):e1004128, 2015.

[16] C. Espinosa-Soto and A. Wagner. Specialization
can drive the evolution of modularity. PLoS Com-
putational Biology, 6(3):e1000719, 2010.

[17] C. Fernando, D. Banarse, M. Reynolds, F.
Besse, D. Pfau, M. Jaderberg, M. Lanctot, and
D.Wierstra. Convolution by evolution: differen-
tiable pattern producing networks. In Proceedings
of the 2016 Genetic and Evolutionary Computa-
tion Conference, pages 109–116, 2016.

[18] D. Filan, S. Hod, C. Wild, A. Critch, and S.
Russell. Pruned neural networks are surprisingly
modular. Technical Report arXiv:2003.04881
[cs.NE], ArXiV, 2020.

[19] J. Gauci and K. Stanley. Generating large–scale
neural networks through discovering geometric
regularities. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages
997–1004, 2007.

[20] S. Han and S. Oh. An optimized modular neural
network controller based on environment classifi-
cation and selective sensor usage for mobile robot
reactive navigation. Neural Computation and Ap-
plication, 17:161–173, 2008.

[21] J. Huizinga, J.B. Mouret, and J. Clune. Evolving
neural networks that are both modular and regu-
lar: Hyperneat plus the connection cost technique.
In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation, pages
697–704, 2014.

[22] M. Hulse, S. Wischmann, and F. Pasemann.
Structure and function of evolved neuro– con-
trollers for autonomous robots. Connection Sci-
ence, 16(4):249–266, 2004.

[23] L. Kirsch, J. Kunze, and David Barber. Mod-
ular networks: Learning to decompose neural
computation. Technical Report arXiv:1811.05249
[cs.LG], ArXiV, 2018.

[24] J. Koutnik, J. Schmidhuber, and F. Gomez. Evolv-
ing deep unsupervised convolutional networks for
vision–based reinforcement learning. In Proceed-
ings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pages 541–548,
2014.

[25] V. Landassuri-Moreno and J. A. Bullinaria. Bias-
ing the evolution of modular neural networks. In
2011 IEEE Congress of Evolutionary Computa-
tion, 2011.

[26] J. Liang, E. Meyerson, and R. Miikkulainen. Evo-
lutionary architecture search for deep multitask
networks. In GECCO ’18: Proceedings of the Ge-
netic and Evolutionary Computation Conference,
pages 466–473, 2018.

[27] I. Loshchilov and F. Hutter. CMA–ES for hyper-
parameter optimization of deep neural networks.
Technical Report arXiv: abs/1604.07269 [cs.NE],
ArXiV, 2016.

[28] P. Melin, D. Bravo, and O. Castillo. Finger-
print recognition using the fuzzy sugeno integral
for response integration in modular neural net-
works. International Journal of General Systems,
37(4):499–515, 2008.

[29] R. Miikkulainen, J. Liang, E. Meyerson, A.
Rawal, D. Fink, O. Francon, B. Raju, H.
Shahrzad, A. Navruzyan, N. Duffy, and B. Hod-
jat. Evolving deep neural networks. Technical Re-
port arXiv abs/1703.00548 [cs.NE], ArXiV, 2017.

[30] J-B. Mouret and S. Doncieux. Evolving modu-
lar neural networks through exaptation. In 2009
IEEE Congress on Evolutionary Computation,
pages 1570–1577, 2009.

[31] H. Munn and M. Gallagher. Modularity in NEAT
reinforcement learning networks, 2022.

[32] N. NourAshrafoddin, A. R. Vahdat, and M. M.
Ebadzadeh. Automatic design of modular neural
networks using genetic programming. In Proceed-
ings of the 17th International Conference on Arti-
ficial Neural Networks ICANN 2007 Part I, pages
788–798, 2007.

[33] M. Potter. The Design and Analysis of a Compu-
tational Model of Cooperative Coevolution. PhD
thesis, George Mason University, 1997.

[34] M. A. Potter and K. A. De Jong. Coopera-
tive coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Compu-
tation, 8(1):1–29, 2000.

126 Tomasz Praczyk

[35] T. Praczyk. Probabilistic neural network applica-
tion to warship radio stations identification. Com-
putational Methods in Science and Technology,
13(1):53–58, 2007.

[36] T. Praczyk. Using augmenting modular neu-
ral networks to evolve neuro–controllers for a
team of underwater vehicles. Soft Computing,
18(12):2445–2460, 2014.

[37] T. Praczyk. Cooperative co–evolutionary neural
networks. Journal of Intelligent & Fuzzy Systems,
30(5):2843–2858, 2016.

[38] T. Praczyk. Hill climb modular assembler en-
coding: Evolving modular neural networks of
fixed modular architecture. Knowledge-Based
Systems, 232:107493, nov 2021.

[39] K. Soltanian, A. Ebnenasir, and M. Afsharchi.
Modular grammatical evolution for the generation
of artificial neural networks. Evolutionary Com-
putation, 30(2):291–327, 06 2022.

[40] S. Sotirov, E. Sotirova, V. Atanassova, K.
Atanassov, O. Castillo, P. Melin, T. Petkov, and
S. Surchev. A hybrid approach for modular neu-
ral network design using intercriteria analysis and
intuitionistic fuzzy logic. Complexity, 1:1–11,
2018.

[41] K. O. Stanley and R. Miikkulainen. Evolving
neural networks through augmenting topologies.
Evolutionary Computation, 10:99–127, 2002.

[42] Y. Sun, B. Xue, M. Zhang, and G. G. Yen. Auto-
matically designing CNN architectures using ge-
netic algorithm for image classification. Technical
Report arXiv:1808.03818 [cs.NE], ArXiV, 2018.

[43] C. R. Tosh. Can computational efficiency alone
drive the evolution of modularity in neural net-
works? Scientific Reports, 6:31982, 2016.

[44] C. R. Tosh and L. McNally. The relative effi-
ciency of modular and non–modular networks of
different size. In Proceedings of the Royal Society
B: Biological Sciences, volume 282:20142568,
2015.

[45] A. Turan, S. D. Hinchberger, and M. H. El Nag-
gar. Predicting the dynamic properties of glyben
using a modular neural network (MNN). Cana-
dian Geotechnical Journal, 45:1629–1638, 2008.

[46] V. K. Valsalam and R. Miikkulainen. Evolving
symmetric and modular neural networks for dis-
tributed control. In Proceedings of the Genetic
and Evolutionary Computation Conference, 2009.

[47] L. Xie and A. Yuille. Genetic CNN. Technical Re-
port arXiv abs/1703.01513 [cs.NE], ArXiV, 2017.

[48] X. Yao and Y. Liu. A new evolutionary sys-
tem for evolving artificial neural networks. IEEE
Transactions on Neural Networks, 8(3):694– 713,
1997.

[49] S.R. Young, D.C. Rose, T.P. Karnowsky, S.H.
Lim, and R.M. Patton. Optimizing deep learning
hyper–parameters through an evolutionary algo-
rithm. In Proceedings of the Workshop on Ma-
chine Learning in High–Performance Computing
Environments, number 4, pages 1–5, 2015.

[50] Z. Zhu, S. Guo, and M. Liao. Deep neuroevolu-
tion: Evolving neural network for character loco-
motion controller. In 2021 2nd International Con-
ference on Artificial Intelligence and Information
Systems, ICAIIS 2021, New York, NY, USA,
2021. Association for Computing Machinery.

Tomasz Praczyk was born in Gru-
dziadz, Poland in 1971. He received
the M.S. degree in computer science
from the Military Technical Academy,
Warszawa, in 1996, the Ph.D. degree
in maritime navigation from the Ma-
ritime Academy, Szczecin, in 2001 and
the habilitation in computer science
from the Military Technical Academy,

Warszawa, in 2012. From 1996 to 2002, he was a Program-
mer/Designer with the Computer Center of Polish Navy, from
2002 to 2013 he was a Senior Lecturer with the Polish Naval
Academy, and since 2013, he has been an Assistant Professor
with the same Academy. His research interests include neu-
ro-evolution, swarm-intelligence, deep learning, underwater
robotics.
https://orcid.org/0000-0003-0547-7935

