PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compressive deformation/failure of cement–asphalt mortars

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cement–asphalt mortar (CAM) has been widely used as a cushion layer in prefabricated concrete slab tracks. However, the deformation and failure of different CAMs under compression are scarcely understood. In this study, therefore, we studied the compressive deformation and failure modes of CAMs with different asphalt–cement ratios (A/Cs or m(A)/m(C) = 0.2 ~ 1.0) together with the temperature effects, to understand the mechanisms behind their mechanical behaviour. Results indicated that, at room temperature, CAMs with low A/Cs (0.2 ~ 0.4), namely CAM-Ls, deformed and failed in a quasi-brittle manner, whereas CAMs with high A/Cs (0.8 ~ 1.0), namely CAM-Hs, were more like ductile materials. The temperature effect could be negligible for CAM-Ls, but significant for CAM-Hs. Low temperatures would cause a ductile-to-brittle transition in CAM-Hs and high temperatures would pose an adverse effect on their deformation and failure under compression. To understand the deformation and failure mechanisms of different CAMs and the temperature effects, microstructural models for CABs with relevant A/Cs were proposed. The microstructural models of CABs demonstrated that the compressive deformation and failure of CAMs depend primarily on their CABs. It is also indicated that, experimentally and theoretically, the boundary A/C value between CAM-Ls and CAM-Hs might be around 0.6, below which the hardened cement paste (hcp) form the matrix of the CAM, whilst above which the asphalt binder turns to the primary continuous phase in the CAB. Due to the microstructure change in CABs with the increasing A/C, the CAMs transitioned from quasi-brittle to ductile materials under compression.
Rocznik
Strony
art. no. e174, 2023
Opis fizyczny
Bibliogr. 32 poz., fot., rys., wykr.
Twórcy
  • School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, People’s Republic of China
autor
  • Novel Polymer Technology Section, The Welding Institute, Cambridge CB21 6AL, UK
autor
  • Department of Civil Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
Bibliografia
  • 1. Ando K, Sunaga M, Aoki H, Haga O. Development of slab tracks for Hokuriku Shinkansen line. Q Rep RTRI. 2001;42(1):35–41.
  • 2. Bastin R. Development of German non-ballasted track forms. Proc ICE Transp. 2006;159:25–39.
  • 3. Jin S, Chen X, Yang J. Key technologies of CA mortar for slab track. China Railw Sci. 2006;27(2):20–5 ((In Chinese)).
  • 4. Wang T, Hu S, Wang F, Liu Z, Gao T, Chen L. Research on main influencing factors on strength of CA Mortars. Railw Eng. 2008;2:109–11 ((In Chinese)).
  • 5. Liu Y, Kong X, Zou Y, Yan P. Static and dynamic mechanical properties of cement asphalt mortars. J Railw Eng. 2009;6(3):1–7 ((In Chinese)).
  • 6. Zhao P. Analysis of slab track's dynamic performance and study of parameter, Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P. R. China, 2003.
  • 7. Liu X, Zhao P, Yang R, Wang P. Theory and method for ballast- less track design in passenger dedicated lines. Chengdu, Sichuan Province China: Southwest Jiaotong University Press; 2010.
  • 8. Zuo J, Jiang Q, Fu D. Research on CA mortars used as cushion layer in slab track. Railw Eng. 2005;9:96–8 ((In Chinese)).
  • 9. Wang T, Hu S, Wang F, Liu Z, Gao T, Zou J, Mechanism study on the effects of mixing sequence of asphalt emulsion on strength development of CA mortar. Railw Constr Technol. 2007;(1) 1–3 (In Chinese).
  • 10. Wang F, Liu Z, Hu S. Influence of loading rate on com- pressive strength of CA mortar. J BEIJING Univ Technol. 2008;34(10):1059–64 ((In Chinese)).
  • 11. Wang Q, R A, Yan P. Influence of m(S) /m(C) and sand gradation on compressive strength and fluidity of CA mortar. J Railw Sci Eng. 2008;15(6):1–5 ((In Chinese)).
  • 12. R A, Yan P, Wang Q. Research on the influencing factor of high strength cement asphalt mortar. J Build Mater. 2009;12(5):519–22 ((In Chinese)).
  • 13. Kong X, Liu Y, Yan P. Temperature sensitivity of mechani- cal properties of cement asphalt mortars. J Chin Ceram Soc. 2010;38(4):553–7 ((In Chinese)).
  • 14. Kong X, Liu Y, Yan P. Effect of loading rate on mechanical prop- erties of cement asphalt mortars. J Build Mater. 2010;13(2):187– 92 ((In Chinese)).
  • 15. Xie Y, Zeng X, Deng D, Liu B, Zheng K. Mechanical char- acteristics of China railway track system (CRTS) I type slab tracks CA mortar under different strain rates. J Build Mater. 2010;13(4):483–6 ((In Chinese)).
  • 16. Tan Y, Ouyang J, Wang J, Li Y, Cen H. Factors influencing strength of cement asphalt mortar and strength mechanism. J Harbin Inst Technol. 2011;43(10):80–3 ((In Chinese)).
  • 17. Liu Y, Kong X, Zhang Y, Yan P. Effect of curing temperature on strength development of cement-asphalt mortars. J Build Mater. 2011;15(2):211–7 ((In Chinese)).
  • 18. Liu Y, Kong X, Zhang Y, Yan P. Static and dynamic mechani- cal properties of cement-asphalt composites. J Mater Civil Eng. 2013;25(10):1489–97.
  • 19. Kong X, Liu Y, Zhang Y, Zhang Z, Yan P, Bai Y. Influences of temperature on mechanical properties of cement asphalt mortars. Mater Struct. 2014;47(1):285–92.
  • 20. Zhang Y, Kong X, Hou S, Liu Y, Han S. Study on the rheologi- cal properties of fresh cement asphalt paste. Constr Build Mater. 2012;27(1):534–44.
  • 21. M.o.R. Dept. of Sci & Tech. Tentative specifications for cement- emulsified asphalt mortars used in CRTS II ballastless slab tracks of passenger-dedicated lines. Beijing, P. R China: China Railway Press; 2008.
  • 22. Neville AM, Properties of concrete, 4th edition ed., Pearson edu- cation limited, Essex, 1999.
  • 23. Yang J, Yan P, Kong X, Li X. Study on the hardening mech- anism of cement asphalt binder. Sci China: Technol Sci. 2010;53(3):1406–12.
  • 24. Hu S, Wang T, Wang F, Liu Z. Adsorption behaviour between cement and asphalt emulsion in cement-asphalt mortar. Adv Cem Res. 2009;21(1):11–4.
  • 25. Poel V, Der C. A general system describing the visco-elastic prop- erties of bitumens and its relation to routine test data. J Appl Chem. 1954;4(5):221–36.
  • 26. Cheung C, Cebon D. Deformation mechanisms of pure bitumen. J Mater Civ Eng. 1997;9(3):117–29.
  • 27. Cheung C, Cebon D. Experimental study of pure bitumens in tension, compression, and shear. J Rheol. 1997;41(1):45–74.
  • 28. Powers TC, Brownyard TL, Studies of the physical properties of hardened Portland cement paste, ACI Journal Proceedings, ACI, 1946.
  • 29. Brouwers H. The work of powers and brownyard revisited: part 1. Cem Concr Res. 2004;34(9):1697–716.
  • 30. Brouwers H. The work of powers and brownyard revisited: part 2. Cem Concr Res. 2005;35(10):1922–36.
  • 31. Brouwers H, The work of powers and brownyard revisited: part 3, Proceedings of 12th international cogress on the chemistry of cement, montreal, Canada, 2007.
  • 32. Lesueur D. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Coll Interface Sci. 2009;145(1):42–82.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6995c279-06ec-45e2-a17d-7a849977f783
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.