PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of applications and rendering engines in architectural design – state-of-the-art

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computer methods in the AEC (Architecture, Engineering, Construction) industry are constantly evolving, mainly towards BIM, and the design process itself within an investment project focuses mainly on documentation. Visualisation or animation are optional elements, mostly done for sales purposes. Photorealism and the quality of created visualisations influence the impressions of the recipient, and the emotions evoked can determine a purchase or investment. As a rule, designers pay great attention to the visualisations they create, but they are not always aware of the solutions available on the market in this respect. In recent decades, rendering engines based on so-called real-time rendering have developed rapidly. The aim of the study was to provide a deep review of existing 3D modelling and visualisation solutions in terms of their popularity, applicability and advantages and limitations. The focus is on applications working with BIM software, which is widely used in the AEC industry. The paper attempts to compare the applications, lists their advantages, disadvantages, benefits and limitations in their use. The conclusions, sometimes subjective, can be useful for the whole community of architects and engineers, related to space design. The results of the review indicate the increasing popularity of 'real-time' solutions, which are displacing 'offline' solutions.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
  • Faculty of Geodesy and Cartography;Warsaw University of Technology; Poland
  • Faculty of Geodesy and Cartography;Warsaw University of Technology; Poland
Bibliografia
  • 1. Shannon T., Unreal Engine 4 for Design Visualization: Developing Stunning Interactive Visualizations, Animations, and Renderings. Pearson Education, 2017.
  • 2. Riener R. and Harder M., Virtual Reality in Medicine. London: Springer, 2012. https://doi.org/10.1007/978-1-4471-4011-5
  • 3. Wu H., Virtual reality - improving the fidelity of architectural visualization. MSc Thesis, Texas Tech University, Lubbock, 2006. Available: https://ttu-ir.tdl.org/bitstream/handle/2346/12601/hao_wu_thesis.pdf [Accessed: 26 Jun 2022]
  • 4. Chen L., Architectural Visualization An Analysis from Human Visual Cognition Process. Melbourne: Monash University, 2004. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.3081&rep=rep1&type=pdf [Accessed: 26 Jun 2022]
  • 5. Czmoch I. and Pękala A., “Traditional Design versus BIM Based Design”, in Procedia Engineering 91, 2014, pp. 210 – 215. https://doi.org/10.1016/j.proeng.2014.12.048
  • 6. Dzudzińska E., “Proposal of a workflow for data-driven design in combination with BIM technology for more efficient office space planning”, Budownictwo i Architektura, vol 21, no. 2, 2022, pp. 5-16. https://doi.org/10.35784/bud-arch.2905
  • 7. Gleń, P. and Krupa, K., “Comparative analysis of the inventory process using manual measurements and laser scanning”, Budownictwo i Architektura, vol. 8, no. 2, 2019, pp. 21-30. https://doi.org/10.35784/bud-arch.552
  • 8. Wang J., Wang X., Shou W. and Xu B., “Integrating BIM and augmented reality for interactive architectural visualisation”, Construction Innovation, vol. 14, no. 4, 2014, pp. 453-476. https://doi.org/10.1108/CI-03-2014-0019
  • 9. Okun J.A. and Zwerman S., The VES Handbook of Visual Effects. 3rd ed., New York: Routledge, 2020. https://doi.org/10.4324/9781351009409
  • 10. Chaos Group, Architectural Visualization Technology Report. 2017, Available: https://www.pccpolska.pl/wp-content/uploads/2018/01/Wizualizacje-architektoniczne-raport-od-Chaos-Group.pdf [Accessed: 26 Jun 2022]
  • 11. NBS, 10th Annual BIM Report. Available: https://www.thenbs.com/knowledge/national-bim-report-2020 [Accesed: 26 Jun 2022]
  • 12. Ma Y-P., “Extending 3D-GIS District Models and BIM-Based Building Models into Computer Gaming Environment for Better Workflow of Cultural Heritage Conservation”, Applied Sciences, vol. 11, no. 5: 2101, 2021. https://doi.org/10.3390/app11052101
  • 13. Yan W., Culp C. and Graf R., “Integrating BIM and gaming for real-time interactive architectural visualization”, Automation in Construction, vol. 20, no. 4. 2011. https://doi.org/10.1016/j.autcon.2010.11.013
  • 14. Żakowska, L., "Wizualizacja, modelowanie i analizowanie przestrzeni transportu miejskiego w aspekcie estetycznym", Budownictwo i Architektura, vol. 13, no.1, 2014, pp. 203-211. https://doi.org/10.35784/bud-arch.1940
  • 15. Zima, K., "Integracja dokumentacji w procesie budowlanym z wykorzystaniem modelowania informacji o budynku", Budownictwo i Architektura, vol. 12, no.1, 2013, pp. 77-84. https://doi.org/10.35784/bud-arch.2176
  • 16. Heins E. and Akenine-Möller T., Ray Tracing Gems. High-Quality and Real-Time Rendering with DXR and Other APIs. Berkeley: Springer Nature, 2019, pp. 607. https://doi.org/10.1007/978-1-4842-4427-2
  • 17. Alsadoon E., Alkhawajah A. and Suhaim A.B., “Effects of a gamified learning environment on students’ achievement, motivations, and satisfaction”, Heliyon, vol. 8, no. 8, 2022, e10249, https://doi.org/10.1016/j.heliyon.2022.e1024
  • 18. Abdulrahaman M.D. et al., “Multimedia tools in the teaching and learning processes: A systematic review”, Heliyon, vol. 6, no. 11, 2020, e05312, https://doi.org/10.1016/j.heliyon.2020.e05312
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69932b3f-c0b4-40b2-9ce3-c6136ac26ee7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.