PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cukrowe czwartorzędowe sole amoniowe

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Sugar quaternary ammonium salts
Języki publikacji
PL
Abstrakty
EN
Quaternary ammonium compounds (QACs) exhibit the properties of both inorganic and organic compounds, and their ionic nature gives them hydrophilic character. The popularity of these compounds is allied to their many applications and ease of synthesis. Most of QACs are stable up to 150°C, readily soluble in water, usually non-toxic in utilitarian concentrations, are surface active, and do not irritate the skin or have a noxious odour [1]. Many of them have fungicidal, bactericidal and algicidal properties [2–5]. The antiviral action of QACs, including against HIV [6, 7], has been reported. They are used as timber preservatives, disinfectants, fabric softeners, anti-electrostatic agents and antifriction substances [5, 8, 9]. In addition, certain drugs administered in cases of diabetes, cardiac arrhythmia, neuroses, allergies and even carcinomas are QACs. Finally, QACs are used in chemical synthesis as catalysts, in phase-boundary catalysis [11], in the reduction of aldehydes and alkenes, and in the Friedl-Crafts reaction. In literature there is only limited amount of information considering quaternary ammonium salts containing sugar substituents. Among them four group of compounds arises: salts linked to C6 atom in sugar, directly connected to anomeric carbon atom, linked trough hydrocarbon spacer and derivatives of polisacharides. Kirk at al. described the synthesis of biologically active QACs [15]. In the Menshutkin reaction between an iodo-derivative and trimethylamine (Scheme 4), these authors obtained compounds with bactericidal and fungicidal properties. The authors obtained a series of analogous compounds using carboxylic acids (with carbon chains of various lengths) ester linked to the C-6-OH group of a sugar derivative. Blizzard synthesized QAC derivatives of vancomycin [28]. It was noticed that the increased hydrophilicity of vancomycin following the addition to it of a suitable fragment enhanced its antibacterial properties [30, 31], one of the more active being a derivative containing an aminium group at position G-6 (Scheme 10). Examples of reactions, in which the terminal carbon atoms in methyl glucopyranosides and polysaccharides are functionalized, are the syntheses carried out by Engel et al. [33, 34], one of which is shown in Figure 5. These authors aimed to find compounds with antibacterial properties. In the first instance, the hydroxyl groups at atoms C-6 of the sugar units in cellulose were O-tosylated. Then, the terminal carbons were functionalized with tertiary amines, yielding QACs. The most effective bactericide among these compounds was the one with a 16-carbon chain, the structure of which is shown Figure 6.
Rocznik
Strony
497--518
Opis fizyczny
Bibliogr. 46 poz., schem.
Twórcy
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Farmaceutyczny Gdańskiego Uniwersytetu Medycznego, Al. Gen. Hallera 107, 80-416 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] W. Jerzykiewicz, W. Misiurny, M. Kozupa, Chemik, 1993, 2, 31.
  • [2] J. Pernak, J. Kalewska, H. Ksycińska, J. Cybulski, H. Ksycin, Eur. Journaj Med. Chem., 2001, 36, 899.
  • [3] T. Thorsteinsson, M. Másson, K.G. Kristinsson, M.A. Hjálmarsdóttir, H. Hilmarsson, T. Loftsson, J. Med. Chem., 2003, 46, 4173.
  • [4] D. Staneva, E. Vasileva-Tonkova, M.S.I. Makki, T.R. Sobahi, R.M. Abdеl-Rahman, A.M. Asiri, I. Grabchev, J. Photochem. Photobiol. B Biol., 2015, 143, 44.
  • [5] E.R. Kenawy, S.D. Worley, R. Broughton, Biomacromolecules, 2007, 8, 1359.
  • [6] M. Shiraishi, Y. Aramaki, M. Seto, H. Imoto, Y. Nishikawa, N. Kanzaki, M. Okamoto, H. Sawada, O. Nishimura, M. Baba, M. Fujino, J. Med. Chem., 2000, 43, 2049.
  • [7] D.L. Prince, H.N. Prince, O. Thraenhart, E. Muchmore, E. Bonder, J. Pugh, J. Clin. Microbiol., 1993, 31, 3296.
  • [8] E. Grabińska-Sota, Ocena oddziaływania czwartorzędowych soli amoniowych na środowisko wodne, Wydawnictwo Politechniki Śląskiej, Gliwice, 2004.
  • [9] K. Bica, L.R. Cooke, P. Nugent, C. Rijksen, R.D. Rogers, Green Chem., 2011, 13, 2344.
  • [10] T. Soldo, O. Frank, H. Ottinger, T. Hofmann, Mol. Nutr. Food Res. 2004, 48, 270.
  • [11] D. Landini, A. Maia, A. Rampoldi, J. Org. Chem., 1986, 51, 3187.
  • [12] P. Quagliotto, G. Viscardi, C. Barolo, D. D’Angelo, E. Barni, C. Compari, E. Duce, E. Fisicaro, J. Org. Chem., 2005, 70, 9857.
  • [13] B. Podgorska, K. Pazdro, G. Węgrzyn, J. Appl. Genet., 2007, 48, 409.
  • [14] B. Dmochowska, J. Piosik, A. Woziwodzka, K. Sikora, A. Wiśniewski, G. Węgrzyn, J. Hazard. Mater., 2011, 193, 272.
  • [15] D.M. Maron, B.N. Ames, Mutat. Res., 1983, 113, 173.
  • [16] K. Erfurt, I. Wandzik, K. Walczak, K. Matuszek, A. Chrobok, Green Chem., 2014, 16, 3508.
  • [17] O. Kirk, F.D. Padersen, C.C. Fuglsan, Bioorg. Med. Chem. Lett., 1997, 7, 1645.
  • [18] H. Finklestein, Ber., 1910, 43, 1528.
  • [19] J.B., Conant, W.R. Kirner, J. Am. Chem. Soc., 1924, 46, 323.
  • [20] J. Riegier, H. Freicheis, A. Imberty, J. Putaux, T. Delair, C. Jérôme, R. Auzély-Velty, Biomacromolecules, 2009, 10, 651.
  • [21] J. Rieger, F. Stoffelbach, D. Cui, A. Imberty, E. Lameignere, J. Putaux, R. Jérôme, R. Auzély-Valty, Biomacromolecules, 2007, 8, 2717.
  • [22] S. Tanimori, T. Ohta, M. Kirihata, Bioorg. & Med. Chem. Lett., 2002, 12, 1135.
  • [23] L.D. Hall, D.C. Miller, Carbohydr. Res., 1975, 40, C1-C2.
  • [24] M. Thomas, D. Montenegro, A. Castaño, L. Friedman, J. Leb, M.L. Huang, L. Rothman, H. Lee, C. Capodiferro, D. Ambinder, E. Cere, J. Galante, J. Rizzo, K. Melkonian, R. Engel, Carbohydr. Res., 2009, 344, 1620.
  • [25] R. Engel, I. Ghan, D. Montenegro, M. Thomas, B. Klaritch-Vrana, A. Castano, L. Friedman, J. Leb, L. Rothman, H. Lee, C. Capodiferro, D. Ambinder, E. Cere, C. Awad, F. Sheikh, J. Rizzo Lee, L.M. Nisbett, E. Testani, K. Melkonian, Molecules, 2011, 16, 1508.
  • [26] L. Pellowska-Januszek, B. Dmochowska, E. Skorupa, J. Chojnacki, W. Wojnowski, A. Wiśniewski, Carbohydr. Res., 2004, 339, 1537.
  • [27] E. Fischer, K. Raske, Ber. Dtsch. Chem. Ges., 1910, 43, 1750.
  • [28] L. Pellowska-Januszek, B. Dmochowska, E. Skorupowa, A. Wiśniewski, Proceedings of 4th International Conference of PhD Students, Published by Univ. Miskolc, Innovation and Technology Transfer Centre, ISBN 963 661 593 4, 2003, 341.
  • [29] B. Dmochowska, L. Pellowska-Januszek, E. Skorupa, A. Nowacki, F. Stock, P. Stepnowski, A. Wiśniewski, Pol. J. Chem., 2006, 80, 1513.
  • [30] T.A. Blizzard, R.M. Kim, J.D. Morgan, II, J. Chang, J. Kohler, R. Kilburn, K. Chapman, M.L. Hammond, Bioorg. Med. Chem. Lett., 2002, 12, 849.
  • [31] M.H. McCormick, W.M. Stark, G.E. Pittenger, R.C. Pittenger, G.M. McGuire, Antibiot. Annu., 1955, 3, 606.
  • [32] R. Nagarajan, A.A. Schabel, F.T. Occolowitz, F.T. Counter, J.L. Ott, J. Antibiot., 1988, 41, 1430.
  • [33] R. Nagarajan, A.A. Schabel, F.T. Occolowitz, F.T. Counter, J.L. Ott, A. M. Felty-Duckworth, J. Antibiot., 1989, 42, 63.
  • [34] S. Yang, Z. Guo, Y. Zhou, L. Zhou, Q. Xue, F. Miao, S. Qin, Carbohydr. Res., 2010, 345, 120.
  • [35] T. Abel, J.I. Cohen, R. Engel, M. Filshtinskaya, A. Melkonian, K. Melkonian, Carbohydr. Res., 2002, 337, 2495.
  • [36] M. Thomas, D. Montenegro, A. Castaňo, L. Friedman, J. Leb, M. L. Huang, L. Rothman, H. Lee, C. Capodiferro, D. Ambinder, E. Cere, J. Galante, J. Rizzo, K. Melkonian, R. Engel, Carbohydr. Res., 2009, 344, 1620.
  • [37] T. Abel, J.I. Cohen, R. Engel, M. Filshtinskaya, A. Melkonian, K. Melkonian, Carbohydr. Res., 2002, 337, 2495.
  • [38] J.I. Cohen, S. Castro, J.A. Han, V. Behaj, R. Engel, Heteroat. Chem., 2000, 11, 546.
  • [39] Ch. Liu, H. Baumann, Carbohydr. Res., 2005, 340, 2229.
  • [40] Ö.V. Rúnarsson, J. Holappa, C. Malainer, H. Steinsson, M. Hjálmarsdóttir, T. Nevalainen, M. Másson, Eur. Polym. J., 2010, 46, 1251.
  • [41] M.A. Maslov, N.G. Morozova, E.I. Chizhik, D.A. Rapoport, E.I. Ryabchikova, M.A. Zenkova, G.A. Serebrennikova, Carbohydr. Res., 2010, 345, 2438.
  • [42] R. Jayakumar, M. Prabaharan, P.T. Sudheesh Kumar, S.V. Nair, H. Tamura, Biotechnol. Adv., 2011, 29, 322.
  • [43] T. Xu, M. Xin, M. Li, H. Huang, S. Zhou, J. Liu, Carbohydr. Res., 2011, 346, 2445.
  • [44] M.E.I. Badawy, E.I. Rabea, N.E.M. Taktak, Carbohydr. Polym., 2014, 111, 670.
  • [45] T. Xu, M. Xin, M. Li, H. Huang, S. Zhou, Carbohydr. Polym., 2010, 81, 931.
  • [46] B. Dmochowska, E. Skorupowa, A. Wiśniewski, Wiad. Chem. 2002, 56, 679.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69917245-ed90-4885-b3bd-53dd4434b06e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.