PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration monitoring of structures in the light of the Polish and international requirements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the wide range of strategies used to protect structures against man-made dynamic excitation. The most popular approaches applied worldwide are compared, and the main differences and similarities are summarized. The literature studies are supported by the results of the measurements performed on different types of real structures, which are sensitive and insensitive to the dynamic load. To make the conclusions more general, various types of excitation forces are examined (long-term and short-term excitations, traffic load, and loads resulting from geotechnical works). The main issue raised in the paper is the problem of unequivocal and accurate assessment of the potential structure damage, based on the different legislations. It can be seen that the application of different codes can even result in opposite conclusions about the safety of the structure.
Wydawca
Rocznik
Strony
209--220
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
Bibliografia
  • [1] Athanasopoulos G., Pelekis, P. (2000), Ground vibrations from sheetpile driving in urban environment: measurements, analysis and effects on buildings and occupants. 19, 371–387.
  • [2] Brząkała W., Baca M. (2017), The measurement and control of building vibrations in course of sheet pile wall and Franki pile driving, 17th Int. Multidisciplinary Scientific GeoConference, SGEM 2017, 29 June–5 July, Albena, Bulgaria, Vol. 17, Hydrogeology, engineering geology and geotechnics. Iss. 12, Science and technologies in geology, exploration and mining. Sofia: STEF92 Technology, pp. 929–936.
  • [3] Oliveira F., Fernandes I. (2017), Influence of geotechnical works on neighboring structures, 17th Int. Multidisciplinary Scientific GeoConference, SGEM 2017, 29 June–5 July, Albena, Bulgaria, Vol. 17, Hydrogeology, engineering geology and geotechnics. Iss. 12, Science and technologies in geology, exploration and mining. Sofia: STEF92 Technology, pp. 993–1001.
  • [4] Wojtowicz A., Michałek J., Ubysz A. (2019), Range of dynamic impact of geotechnical works on reinforced concrete structures, E3S Web Conf., vol. 97, 03026.
  • [5] Dobrzycki P., Ivannikov A.L., Rybak J., Shkodkina V.O., Tyulyaeva Y. (2019), The impact of Rapid Impulse Compaction (RIC) of large non-cohesive material deposits on the surrounding area. IOP Conf. Ser.: Earth Environ Sci., 2019, 362(1), 012132.
  • [6] Golik V.I., Kongar-Syuryun C.B., Michałek A., Pires P., Rybak A. (2021), Ground transmitted vibrations in course of innovative vinyl sheet piles driving. Journal of Physics: Conf. Ser., 1921(1), 012083.
  • [7] Herbut A., Khairutdinov M.M., Kongar-Syuryun C., Rybak J. (2019), The surface wave attenuation as the effect of vibratory compaction of building embankments. IOP Conf. Ser.: Earth Environ Sci., 362(1), 012131.
  • [8] Jakubczyk-Gałczyńska A., Jankowski R. (2014), Traffic-induced vibrations. The impact on buildings and people. Proceedings of the 9th International Conference “ENVIRONMENTAL ENGINEERING” 22–23 May 2014, Vilnius, Lithuania, VGTU Press Selected Papers, Article number enviro.2014.028
  • [9] Valaskova V., Papan D., Papanova Z. (2018), Traffic seismicity effect on monumental buildings – results of case studies. J. Meas. Eng. 6(4), 210–217
  • [10] Papan D., Papanova Z., Krkoskova K (2019), Experimental dynamic analysis of traffic seismicity effect on historical building. E3S Web Conferences 106, 01018.
  • [11] Wyjadłowski M. (2017), Methodology of dynamic monitoring of structures in the vicinity of hydrotechnical works – selelced case studies, Studia Geotechnica et Mechanica, Vol. 39, No. 4, 121–129.
  • [12] Jakubczyk-Gałczyńska, A., Jankowski, R. (2020). A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings. In: Computational Science – ICCS 2020. Lecture Notes in Computer Science, 12139. Springer, Cham. (140)
  • [13] Łupieżowiec M. (2021), Modelowanie zjawiska rozchodzenia się drgań powstałych od impulsów technologicznych w ośrodku gruntowym. Wydawnictwo Politechniki Śląskiej Gliwice 2021.
  • [14] Łupieżowiec M. (2021), Modeling the Phenomenon of Propagation of Technological Impulses in Subsoil, Int. J. Geomech., 2022, 22(10): 04022175
  • [15] Herbut A. (2021), Aktywna ochrona dynamiczna konstrukcji przez redukcję amplitudy fali propagującej w podłożu gruntowym, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2021.
  • [16] Prawo ochrony środowiska z dnia 27 kwietnia 2001r., Dz. U. z 2021 r. poz. 1973, 2127, 2269, z 2022 r. poz. 1079 (Environmental Protection Law, in Polish).
  • [17] Ustawa Prawo budowlane z dnia 7 lipca 1994r., Dz. U. z 2021 r. poz. 2351, z 2022 r. poz. 88 (Construction Law, in Polish)
  • [18] Dyrektywa 2003/35/WE Parlamentu Europejskiego i Rady z 26 maja 2003r. (in Polish).
  • [19] Dyrektywa 2001/42/WE Parlamentu Europejskiego i Rady z 27 czerwca 2001r. (in Polish).
  • [21] BS 5228-4:1992. (1992). British standard. Noise control on construction and open sites. Part 4: Code of practice of noise and vibration control applicable to piling operation.
  • [22] BS 7385-2:1993. (1993). Evaluation and measurement for vibration in buildings — Part 2: Guide to damage levels from ground borne vibration
  • [23] DIN 4150-3:1999. (1999). Structural vibration Part 3: Effects of vibration on structures.
  • [24] SN 640312:1992 Vibrations - vibration effects in buildings.
  • [25] Circulaire du 23/07/86 relative aux vibrations mécaniques émises dans l’environnement par les installations classées pour la protection de l’environnement (in French).
  • [26] Eurocode3, E. 1.-5. (1998). Design of steel structures – part 5. Piling.
  • [27] SN 640312:1992 Vibrations - vibration effects in buildings.
  • [28] FTA standards (2006) Transit, noise and vibration impact assessment.
  • [29] American Association of State Highway and Transportation Officials (AASHTO) (1990), Standard recommended practice for evaluation of transportation-related earthborn vibrations, Washington, DC.
  • [30] PN-B-02170:2016-12. Ocena szkodliwości drgań przekazanych przez podłoże na budynki, 2016 (in Polish).
  • [31] PN-B-02171:2017-06. Ocena wpływu drgań na ludzi w budynkach, 2017, (in Polish)
  • [32] Dulińska J., Kawecki J., Kozioł K., Stypuła K., Tatara T. (2014), Oddziaływania Parasejsmiczne Przekazywane na Obiekty Budowlane. Wydawnictwo Politechniki Krakowskiej, Kraków (in Polish).
  • [33] Stypuła K., Kawecki J. (2008), Błędy w prognozowaniu i diagnostyce wpływów dynamicz-nych na budynki. Czasopismo Techniczne, 105(1–M), 127–136 (in Polish).
  • [34] Gorska K., Brzakała W. (2008), On safety of slurry-wall trenches. Stud. Geotech. Mech., 30, 198–206.
  • [35] Urbański A., Michalski Ł. (2015), Finite element analysis of lateral earth pressure on a lagging in soldier pile walls Technical Transactions. Environment Engineering, Czasopismo Techniczne. Środowisko, Y. 112, Iss. 24, 171–185.
  • [36] Kabała C., Bekier J., Bińczycki T., Bogacz, A., Bojko, O., Cuske, M., Ćwieląg-Piasecka I., Dębicka, M.; Gałka, B.; Gersztyn, L., (2015); et al. Soils of Lower Silesia: Origins, Diversity and Protection; Kabała, C., Ed.; Polish Society of Soil Science, Wrocław Branch, Polish Humic Substances Society: Wrocław, Poland, ISBN 978-83-934096-4-8.
  • [37] Wang X., Xu Y. (2021), Impact of the Depth of Diaphragm Wall on the Groundwater Drawdown during Foundation Dewatering Considering Anisotropic Permeability of Aquifer. Water, 13, 418.
  • [38] Rybak J., Ivannikov, A., Kulikova, E., Żyrek, T. (2018), Deep excavation in urban areas – Defects of surrounding buildings at various stages of construction. MATEC Web Conf., 146, 2012,
  • [39] Woods R. D. (1997), Dynamic effects of pile installations on adjacent structures, NCHRP 253. Washington, D.C.: National Academy Press, 86 pp., Transportation Research Board.
  • [40] Clough G. W., Chameau J. L. (1980), Measured effects of vibratory sheetpile driving. Journal of Geotechnical Engineering Division, ASCE 106(10): 1081–99.
  • [41] Linehan P.W., Longinow A., Dowding C.H. (1992), Pipe response to pile driving and adjacent excavation. Journal of Geotechnical Engineering, ASCE 118(2):300–16.
  • [42] Drabkin S., Lacy H., Kim D. S. (1996) Estimating settlement of sand caused by construction vibration. Journal of Geotechnical Engineering, ASCE 122(11):920–8.
Uwagi
Brak poz. 20 w bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69910acf-5c9c-4df4-8d34-f20245b242a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.