PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We use GRACE gravity data released by the Center for Space Research (CSR) and the Groupe de Recherches en Geodesie Spatiale (GRGS) to detect the water storage changes over the Tibetan Plateau (TP). A combined filter strategy is put forward to process CSR RL05 data to remove the effect of striping errors. After the correction for GRACE by GLDAS and ICE-5G, we find that TP has been overall experiencing the water storage increase during 2003-2012. During the same time, the glacier over the Himalayas was sharply retreating. Interms of linear trends, CSR’s results derived by the combined filter are close to GRGS RL03 with the Gaussian filter of 300-km window. The water storage increasing rates determined from CSR’s RL05 products in the interior TP, Karakoram Mountain, Qaidam Basin, Hengduan Mountain, and middle Himalayas are 9.7, 6.2, 9.1, –18.6, and –20.2 mm/yr, respectively. These rates from GRGS’s RL03 products are 8.6, 5.8, 10.5, –19.3 and –21.4 mm/yr, respectively.
Czasopismo
Rocznik
Strony
463--476
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
  • State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, China
autor
  • College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
  • State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Science, Wuhan, China
autor
  • College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
autor
  • State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Science, Wuhan, China
autor
  • Institute of Remote Sensing and Digital Earth, Chinese Academy of Science, Beijing, China
autor
  • College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
  • State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, China
Bibliografia
  • Bettadpur, S. (2012), UTCSR Level-2 processing standards document for level-2 product release 05, Rev. 4.0, Center for Space Research, The University of Texas at Austin, USA.
  • Davis, J.L., M.E. Tamisiea, P. Elósegui, J.X. Mitrovica, and E.M. Hill (2008), A statistical filtering approach for Gravity Recovery and Climate Experiment (GRACE) gravity data, J. Geophys. Res. 113, B4, B04410, DOI: 10.1029/ 2007JB005043.
  • Eshagh, M., J.-M. Lemoine, P. Gegout, and R. Biancale (2013), On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models, Acta Geophys. 61, 1, 1-17, DOI: 10.2478/s11600 -012-0053-5.
  • Gardelle, J., E. Berthier, Y. Arnaud, and A. Kääb (2013), Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999-2011, The Cryosphere 7, 6, 1263-1286, DOI: 10.5194/tc-7-1263-2013.
  • Gardner, A.S., G. Moholdt, J.G. Cogley, B. Wouters, A.A. Arendt, J. Wahr, E. Berthier, R. Hock, W.T. Pfeffer, G. Kaser, S.R.M. Ligtenberg, T. Bolch, M.J. Sharp, J.O. Hagen, M.R. van den Broeke, and F. Paul (2013), A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009, Science 340, 6134, 852-857, DOI: 10.1126/science.1234532.
  • Guo, J., D. Mu, X. Liu, H. Yan, and H. Dai (2014), Equivalent water height extracted from GRACE gravity field model with robust independent component analysis, Acta Geophys. 62, 4, 953-972, DOI: 10.2478/s11600-014- 0210-0.
  • Jacob, T., J. Wahr, W.T. Pfeffer, and S. Swenson (2012), Recent contributions of glaciers and ice caps to sea level rise, Nature 482, 7386, 514-518, DOI: 10.1038/nature10847.
  • Ju, X.L, Y.Z. Shen, and Z.Z. Zhang (2014), GRACE RL05-based ice mass changes in the typical regions of Antarctica from 2004 to 2012, Geodesy Geodynam. 5, 4, 57-67, DOI: 10.3724/SP.J.1246.2014.04057.
  • Kääb, A., E. Berthier, C. Nuth, J. Gardelle, and Y. Arnaud (2012), Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas, Nature 488, 7412, 495-498, DOI: 10.1038/nature11324.
  • Kusche, J. (2007), Approximate decorrelation and non-isotropic smoothing of timevariable GRACE-type gravity field models, J. Geodesy 81, 11, 733-749, DOI: 10.1007/s001190-007-0143-3.
  • Matsuo, K., and K. Heki (2010), Time-variable ice loss in Asian high mountains from satellite gravimetry, Earth Planet. Sci. Lett. 290, 1-2, 30-36, DOI: 10.1016/j.epsl.2009.11.053.
  • Mu, D.P., J.Y. Guo, Z.C. Sun, and Q.L. Kong (2014), Equivalent water height from GRACE gravity model based on principal component analysis, Prog. Geophys. 29, 4, 1512-1517, DOI: 10.6038/pg20140405.
  • Peltier, W.R. (2004), Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Ann. Rev. Earth Planet. Sci. 32, 111- 149, DOI: 10.1146/annurev.earth.32.082503.144359.
  • Rangwala, I., J.R. Miller, and M. Xu (2009), Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor, Geophys. Res. Lett. 36, 6, L06703, DOI: 10.1029/2009GL037245.
  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004), The global land data assimilation system, Bull. Am. Meteorol. Soc. 85, 3, 381-394, DOI: 10.1175/ BAMS-85-3-381.
  • Rodell, M., I. Velicogna, and J.S. Famiglietti (2009), Satellite-based estimates of groundwater depletion in India, Nature 460, 999-1002, DOI: 10.1038/ nature08238.
  • Save, H., S. Bettadpur, and B.D. Tapley (2012), Reducing errors in the GRACE gravity solutions using regularization, J. Geodesy 86, 9, 695-711, DOI: 10.1007/s00190-012-0548-5.
  • Song, C., B. Huang, and L. Ke (2013), Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data, Remote Sens. Environ. 135, 25-35, DOI: 10.1016/j.rse.2013.03.013.
  • Sun, W., Q. Wang, H. Li, Y. Wang, S. Okubo, D. Shao, D. Liu, and G. Fu (2009), Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness, Geophys. Res. Lett. 36, 2, L02303, DOI: 10.1029/2008GL036512.
  • Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett. 33, 8, L08402, DOI: 10.1029/ 2005GL025285.
  • Swenson, S.C., and J.M. Wahr (2011), Estimating signal loss in regularized GRACE gravity field solutions, Geophys. J. Int. 185, 2, 693-702, DOI: 10.1111/ j.1365-246X.2011.04977.x.
  • Tapley, B.D., S. Bettadpur, J.C. Ries, P.F. Thompson, and M.M. Watkins (2004), GRACE measurements of mass variability in the Earth system, Science 305, 5683, 503-505, DOI: 10.1126/science.1099192.
  • Velicogna, I., and J. Wahr (2006), Acceleration of Greenland ice mass loss in spring 2004, Nature 443, 7109, 329-331, DOI: 10.1038/nature05168.
  • Wahr, J., M. Molenaar, and F. Bryan (1998), Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res. 103, B12, 30205-30229, DOI: 10.1029/ 98JB02844.
  • Wahr, J., D. Wingham, and C. Bentley (2000), A method of combining ICESat and GARCE satellite data to constrain Antarctic mass balance, J. Geophys. Res. 105, B7, 16279-16294, DOI: 10.1029/2000JB900113.
  • Wang, X., F. Siegert, A.G. Zhou, and J. Franke (2013), Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972-2010, Global Planet. Change 111, 246-257, DOI: 10.1016/j.gloplacha.2013.09.011.
  • Werth, S., A. Güntner, R. Schmidt, and J. Kusche (2009), Evaluation of GRACE filter tools from a hydrological perspective, Geophys. J. Int. 179, 3, 1499- 1515, DOI: 10.1111/j.1365-246X.2009.04355.x.
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen (2014), Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review, Global Planet Change 112, 79-91, DOI: 10.1016/j.gloplacha. 2013.12.001.
  • Yao, T.D., D.H. Qin, Y.P. Shen, L. Zhao, N.L. Wang, and A.X. Lu (2013), Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai–Tibetan Plateau, Chin. J. Nat. 35, 3, 179-186.
  • Yi, S., and W. Sun (2014), Evaluation of glacier changes in high-mountain Asia based on 10 year GARCE RL05 models, J. Geophys. Res. 119, 3, 2504- 2517, DOI: 10.1002/2013JB010860.
  • Zhang, G., H. Xie, S. Kang, D. Yi, and S.F. Ackley (2011), Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009), Remote Sens. Environ. 115, 7, 1733-1742, DOI: 10.1016/j.rse.2011.03.005.
  • Zhang, G., T. Yao, H. Xie, S. Kang, and Y. Lei (2013), Increased water over the Tibetan Plateau: From lakes or glaciers? Geophys. Res. Lett. 40, 10, 2125- 2130, DOI: 10.1002/grl.50462.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-698cb107-87fc-4fc5-95a6-d6b8cf5ce3ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.