Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work concerns numerical simulations of a cone mill used for emulsion preparation. Hydrodynamics, power consumption and population balance are investigated for various operating conditions at high phase volume emulsions and for different rheologies. Cone mills are usually simplified as a simple gap between rotor and stator but by increasing the complexity of the geometry till it represents the commercial device identifies a wealth of additional features such as recirculation zones above (which enhance breakage) and below (which allow for coalescence) the rotor-stator gap. Two separate sets of population balance modelling constants are required to capture all the experiment results – even with the most complex geometries. Some suggestions are made for improvements and further studies will consider other rotor-stator devices.
Czasopismo
Rocznik
Tom
Strony
295–--320
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, UK
autor
- Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, UK
autor
- Unilever Foods Innovation Centre, Bronland 14, 6708WH Wageningen, The Nederlands
autor
- Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, UK
Bibliografia
- 1. Alopaeus V., Koskinen J., Keskinen K.I., 1999. Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model. Chem. Eng. Sci., 54, 5887–5899. DOI: 10.1016/S0009-2509(99)00170-0.
- 2. Bałdyga J., Jasinska M., Kotowicz M., Tyl G., Bouaifi M., 2018. Population Balance Equations: fundamentals, challenges, application, limitations and perspectives. Conference: 23𝑟𝑑 International Congress of Chemical and Process Engineering. CHISA 2018, Prague.
- 3. Bałdyga J., Jasinska M., Kowalski A.J., 2016. Effect of rheology of dense emulsions on the flow structure in agitated systems. Chem. Eng. Res. Des., 108, 3–12. DOI: 10.1016/j.cherd.2015.11.026.
- 4. Bałdyga J., Orciuch W., Makowski Ł., Malski-Brodzicki M., Malik K., 2007. Break up of nano-particle cluster in high-shear devices. Chem. Eng. Process. Process Intensif., 46, 851–861. DOI: 10.1016/j.cep.2007.05.016.
- 5. Bałdyga J., Podgorska W., 1998. Drop break-up in intermittent turbulence: Maximum stable and transient sizes of drops. Can. J. Chem. Eng., 76, 456–470. DOI: 10.1002/cjce.5450760316.
- 6. Bentley B.J., Leal L.G., 1986. An experimental investigation of drop deformation and breakup in steady, twodimensional linear flows. J. Fluid Mech., 167, 241–283. DOI: 10.1017/S0022112086002811.
- 7. Buffo A., De Bona J., Vanni M., Marchisio D.L., 2016. Simplified volume-averaged models for liquid-liquid dispersions: Correct derivation and comparison with other approaches. Chem. Eng. Sci., 153, 382–393. DOI: 10.1016/ j.ces.2016.07.032.
- 8. Buffo A., Ferrari M., Boccardo G. and Marchisio D.L., 2019. Numerical simulation of a high-shear cone mill mixer for food emulsions production. ECCE12, 12th European Congress of Chemical Engineering. Florence, Italy, 15-19 September 2019. Book of abstracts, 650–651. DOI: 10.3303/BOA1901.
- 9. Chesters A.K., 1991. Modelling of coalescence processes in fluid-liquid dispersions. A review of current understanding. Chem. Eng. Res. Des., 69(4), 259–270. de Bruijn R.A., 1989. Deformation and breakup of drops in simple shear flow. PhD Thesis, Technische Universiteit Eindhoven. DOI: 10.6100/IR318702.
- 10. Dubbelboer A., 2016. Towards optimization of emulsified consumer products: modelling and optimization of sensory and physicochemical aspects. PhD Thesis, Technical University of Eindhoven.
- 11. Dubbelboer A., Janssen J., Hoogland H., Mudaliar A., Maindarkar S., Zondervan E., Meuldijk J., 2014. Population balances combined with Computational Fluid Dynamics: A modeling approach for dispersive mixing in a high pressure homogenizer. Chem. Eng. Sci., 117, 376–388. DOI: 10.1016/j.ces.2014.06.047.
- 12. Dubbelboer A., Janssen J.J.M., Hoogland H., Zondervan E., Meuldijk J., 2016. Pilot-scale production process for high internal phase emulsions: Experimentation and modeling. Chem. Eng. Sci., 148, 32–43. DOI: 10.1016/j.ces. 2016.03.014.
- 13. Grace H.P., 1982. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun., 14, 225–277. DOI: 10.1080/00986448208911047.
- 14. Hakansson A, Tragardh C., Bergenstahl B., 2009. Studying the effects of adsorption, recoalescence and fragmentation in a high-pressure homogenizer using a dynamic simulation model. Food Hydrocolloids, 23, 1177–1183. DOI: 10.1016/j.foodhyd.2008.10.003.
- 15. IKA, 2020. Commercial brochure. Available at: https://www.ika.com/.
- 16. Jansen K.M.B., Agterof W.G.M., Mellema J., 2001. Droplet breakup in concentrated emulsions. J. Rheol., 45, 227–236. DOI: 10.1122/1.1333001.
- 17. Janssen J.J.M., Hoogland H., 2014. Modelling strategies for emulsification in industrial practice. Can. J. Chem. Eng. 92, 198–202. DOI: 10.1002/cjce.21942.
- 18. Janssen J.J.M.,Mayer R., 2016. Computational Fluid Dynamics (CFD)-based droplet size estimates in emulsification equipment. Processes, 4, 50. DOI: 10.3390/pr4040050.
- 19. Jasinska M., Bałdyga J., Hall S., Pacek A.W., 2014. Dispersion of oil droplets in rotor-stator mixers: Experimental investigations and modelling. Chem. Eng. Process. Process Intensif., 84, 45–53. DOI: 10.1016/j.cep.2014.02.008.
- 20. Li X., Zang Jj., Xu Lx., 2014. A numerical investigation of the flow between rotating conical cylinders of two different configurations. J. Hydrodyn., 26, 431–435. DOI: 10.1016/S1001-60581460049-4.
- 21. Lo S., Zhang D., 2009. Modelling of break-up and coalescence in bubbly two-phase flows. J. Comput. Multiphase Flows, 1, 23–38. DOI: 10.1260/175748209787387106.
- 22. Lupetow R.M, Docter A., Min K., 1992. Stability of axial flow in an annulus with a rotating inner cylinder. Phys. Fluids A, 4, 2446. DOI: 10.1063/1.858485.
- 23. Lupieri G., Kowalski A.J., Janssen J.J.M., 2019. Numerical modelling of emulsion preparation through CFD. ECCE12, 12𝑡ℎ European Congress of Chemical Engineering. Florence, Italy, 15-19 September 2019. Book of abstracts, 556–557. DOI: 10.3303/BOA1901.
- 24. Maindarkar S., Dubbelboer A., Meuldijk J., Hoogland H., Henson M., 2014. Prediction of emulsion drop size distributions in colloid mills. Chem. Eng. Sci., 118, 114–125. DOI: 10.1016/j.ces.2014.07.032.
- 25. Noui-Mehidi M.N., Ohmura N., Kataoka K., 2002. Mechanism of mode selection for Taylor vortex flow between coaxial conical rotating cylinders. J. Fluids Struct., 16, 247–262. DOI: 10.1006/jfls.2001.0417.
- 26. Noui-Mehidi M.N., Ohmura N., Kataoka K., 2005. Dynamics of the helical flow between rotating conical cylinders. J. Fluids Struct., 20, 331–344. DOI: 10.1016/j.jfluidstructs.2004.12.001.
- 27. Park H.M., 2018. Comparison of the pseudo-single-phase continuum model and the homogeneous single-phase model of nanofluids. Int. J. Heat Mass Transfer, 120, 106–116. DOI: 10.1016/j.ijheatmasstransfer.2017.12.027.
- 28. Rapley S., Eastwick C., Simmons K., 2008. Computational investigation of torque on coaxial rotating cones. J. Fluid Eng., 130, 061102. DOI: 10.1115/1.2903518.
- 29. Wieringa J.A., van Dieren F., Janssen J.J.M., AgterofW.G.M., 1996. Droplet breakup mechanism during emulsification in colloid mills at high dispersed phase volume fraction. Trans IChemE A, 74, 554–562.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-698b6c66-33bf-4f55-8f60-0707a913da98