PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

H2 and syngas production from catalytic cracking of pig manure and compost pyrolysis vapor over Ni-based catalysts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Catalytic cracking of volatiles derived from wet pig manure (WPM), dried pig manure and their compost was investigated over Ni/Al2O3  and Ni-loaded on lignite char (Ni/C). Non-catalytic pyrolysis of WPM resulted in a carbon conversion of 43.3% and 18.5% in heavy tar and light tar, respectively. No tar was formed when Ni/Al2O3  was introduced for WPM gasification and the gas yield significantly reached to a high value of 64.4 mmol/g at 650°C. When Ni/C was employed, 5.9% of carbon in the light tar was found at 650°C, revealing that the Ni/C is not active enough for cracking of tarry materials. The pyrolysis vapor was cracked completely and gave a H2-rich tar free syngas in high yield. High water amount of WPM promotes steam gasification of char support, causing the deactivation of Ni/C. Such a study may be beneficial to the development of livestock manure catalytic gasification technology.
Rocznik
Strony
8--14
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • China University of Mining & Technology, Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), Xuzhou 221116, Jiangsu, China
  • China University of Mining & Technology, National Engineering Research Center of Coal Preparation and Purifi cation, Xuzhou 221116, Jiangsu, China
autor
  • China University of Mining & Technology, Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), Xuzhou 221116, Jiangsu, China
autor
  • China University of Mining & Technology, Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), Xuzhou 221116, Jiangsu, China
autor
  • Gunma University, Division of Environmental Engineering Science, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
Bibliografia
  • 1. Huang, G., Han, L., Yang, Z. & Wang, X. (2008). Evaluation of the nutrient metal content in Chinese animal manure compost using near infrared spectroscopy (NIRS). Bioresour. Technol. 99, 8164–8169. DOI: 10.1016/j.biortech.2008.03.025.
  • 2. Kim, M., Li, D., Choi, O., Sang, B.I., Chiang, P.C. & Kim, H. (2017). Effects of supplement additives on anaerobic biogas production. Korean J. Chem. Eng. 34, 2678–2685. DOI:10.1007/s11814-017-0175-1.
  • 3. Cao, J.P., Huang, X., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2015). Nitrogen transformation during gasification of livestock compost over transition metal and Ca-based catalysts. Fuel 140, 477–483. DOI: 10.1016/j.fuel.2014.10.008.
  • 4. Sweeten, J.M., Annamalai, K., Thien, B. & McDonald, L.A. (2003). Co-firing of coal and cattle feedlot biomass (FB) fuels. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics. Fuel 82, 1167–1182. DOI: 10.1016/S0016-2361(03)00007-3.
  • 5. Li, L. & Takarada, T. (2013). Conversion of nitrogen compounds and tars obtained from pre-composted pig manure pyrolysis, over nickel loaded brown coal char. Biomass Bioenerg. 56, 456–463. DOI: 10.1016/j.biombioe.2013.05.028.
  • 6. Ro, K.S., Cantrell, K., Elliott, D. & Hunt, P.G. (2007). Catalytic wet gasification of municipal and animal wastes. Ind. Eng. Chem. Res. 46, 8839–8845. DOI: 10.1021/ie061403w.
  • 7. Liu, T.L., Cao, J.P., Zhao, X.Y., Wang, J.X., Ren, X.Y., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst. Fuel Process. Technol. 160, 19–26. DOI: 10.1016/j.fuproc.2017.02.012.
  • 8. Huang, X., Cao, J.P., Zhao, X.Y., Wang, J.X., Fan, X., Zhao, Y.P. & Wei, X.Y. (2016). Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 169, 93–98. DOI: 10.1016/j.fuel.2015.12.011.
  • 9. Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D. & Mlsna, T. (2015). Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 265, 219–227. DOI: 10.1016/j.cej.2014.12.006.
  • 10. Wang, J.X., Cao, J.P., Zhao, X.Y., Liu, T.L., Wei, F., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Study on pine sawdust pyrolysis behavior by fast pyrolysis under inert and reductive atmospheres. J. Anal. Appl. Pyrol. 125, 279–288. DOI: 10.1016/j.jaap.2017.03.015.
  • 11. Xu, G., Murakami, T., Suda, T., Matsuzaw, Y. & Tani, H. (2009). Two-stage dual fluidized bed gasification: Its conception and application to biomass. Fuel Process. Technol. 90, 137–144. DOI: 10.1016/j.fuproc.2008.08.007.
  • 12. Ren, J., Cao, J.P., Zhao, X.Y., Wei, F., Liu, T.L., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Preparation of high-dispersion Ni/C catalyst using modified lignite as carbon precursor for catalytic reforming of biomass volatiles. Fuel 202, 345–351. DOI: 10.1016/j.fuel.2017.04.060.
  • 13. Ji, P.J., Feng, W. & Chen, B.H. (2009). Comprehensive simulation of an intensified process for H2 production from steam gasification of biomass. Ind. Eng. Chem. Res. 48, 3909–3920. DOI: 10.1021/ie801191g.
  • 14. Porada, S., Rozwadowski, A. & Zubek, K. Studies of catalytic coal gasification with steam. Pol. J. Chem. Technol. 18, 97–102. DOI: 10.1515/pjct-2016-0054.
  • 15. Ashok, J. & Kawi, S. (2014). Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catal. 4, 289–301. DOI: 10.1021/cs400621p.
  • 16. Karnjanakom, S., Guana, G.Q., Asep, B., Dua, X., Hao, X.G., Samart, C. & Abudula, A. (2015). Catalytic steam reforming of tar derived from steam gasification of sunflower stalk over ethylene glycol assisting prepared Ni/MCM-41. Energy Convers. Manage. 98, 359–368. DOI: 10.1016/j.enconman.2015.04.007.
  • 17. Li, S., Zhu, C., Guo, S.M. & Guo, L.J. (2015). A dispersed rutile-TiO2-supported Ni nanoparticle for enhanced gas production from catalytic hydrothermal gasification of glucose. RSC Adv. 5, 81905–81914. DOI: 10.1016/j.enconman.2015.04.007.
  • 18. Zhao, X.Y., Ren, J., Cao, J.P., Wei, F., Zhu, C., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Catalytic reforming of volatiles from biomass pyrolysis for hydrogen-rich gas production over limonite ore. Energy Fuels 31, 4054–4060. DOI: 10.1021/acs. energyfuels.7b00005.
  • 19. Wang, J., Xiao, B., Liu, S., Hu, Z., He, P., Guo, D., Hu, M., Qi, F. & Luo, S. (2013). Catalytic steam gasification of pig compost for hydrogen-rich gas production in a fixed bed reactor. Bioresour. Technol. 133, 127–133. DOI: 10.1016/j.biortech.2013.01.092.
  • 20. Cao, J.P., Shi, P., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2014). Decomposition of NOx precursors during gasification of wet and dried pig manures and their composts over Ni-based catalysts. Energy Fuels 28, 2041–2046. DOI: 10.1021/ef5001216.
  • 21. Wang, B.S., Cao, J.P., Zhao, X.Y., Bian, Y., Song, C., Zhao, Y. P., Fan, X., Wei, X.Y. & Takarada, T. (2015). Preparation of nickel-loaded on lignite char for catalytic gasification of biomass. Fuel Process. Technol. 136, 17–24. DOI: 10.1016/j.fuproc.2014.07.024.
  • 22. Li, L., Morishita, K., Mogi, H., Yamasaki, K. & Takarada, T. (2010). Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char. Fuel Process. Technol. 91, 889–894. DOI: 10.1016/j.fuproc.2009.08.003.
  • 23. Kahdum, B.J., Lafta, A. J. & Johdh, A.M. (2017). Enhancement photocatalytic activity of spinel oxide (Co, Ni)3O4 by combination with carbon nanotubes. Pol. J. Chem. Technol. 19, 61–67. DOI: 10.1515/pjct-2017-0050.
  • 24. Ren, J., Cao, J.P., Zhao, X.Y., Wei, F., Zhu, C. & Wei, X.Y. (2017). Extending catalyst lifetime by doping of Ce in Ni loaded on acid-washed lignite char for biomass catalytic gasification. Catal. Sci.Technol. 7, 5741–5749. DOI: 10.1039/C7CY01670K.
  • 25. Zeng, Y., Ma H.F., Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2014). Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation. Pol. J. Chem. Technol. 16, 95–100. DOI: 10.2478/pjct-2014-0076.
  • 26. Cao, J.P., Ren, J., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2018). Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound. Fuel, 217, 515–521. DOI: 10.1016/j.fuel.2017.12.121.
  • 27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguezreinoso, F., Rouquerol, J. & S.W. Sing, K. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 25–25. DOI: 10.1515/pac-2014-1117.
  • 28. Donald, J., Xu, C., Hashimoto, H., Byambajav, E. & Ohtsuka, Y. (2010). Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere. Appl. Catal. A Gen. 375, 124–133. DOI: 10.1016/j.apcata.2009.12.030.
  • 29. Xua, C.C., Donald, J., Byambajav, E. & Ohtsuka, Y. (2010). Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel 89, 1784–1795. DOI: 10.1016/j.apcata.2009.12.030.
  • 30. Sehested, J. (2006). Four challenges for nickel steamreforming catalysts. Catal. Today 111, 103–110. DOI: 10.1016/j.cattod.2005.10.002.
  • 31. Wu, C. & Williams, P.T. (2009). Hydrogen production by steam gasification of polypropylene with various nickel catalysts. Appl. Catal. B Environ. 87, 152–161. DOI: 10.1016/j.apcatb.2008.09.003.
  • 32. Alipour, Z., Rezaei, M. & Meshkani, F. (2014). Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J. Ind. Eng. Chem. 20, 2858–2863. DOI: 10.1016/j.jiec.2013.11.018.
  • 33. Liu, J.J., Peng, H.G., Liu, W.M., Xu, X.L., Wang, X., Li, C.Q., Zhou, W.F., Yuan, P., Chen, X.H., Zhang, W.G. & Zhan, H.B. (2014). Tin modification on Ni/Al2O3: designing potent coke-resistant catalysts for the dry reforming of methane. ChemCatChem. 6, 2095–2104. DOI: 10.1002/cctc.201402091.
  • 34. Cao, J.P., Huang, X., Zhao, X.Y., Wang, B.S., Meesuk, S., Sato, K., Wei, X.Y. & Takarada, T. (2014). Low-temperature catalytic gasification of sewage sludge-derived volatiles to produce clean H2-rich syngas over a nickel loaded on lignite char. Int. J. Hydrogen Energ. 39, 9193–9199. DOI: 10.1016/j.ijhydene.2014.03.222.
  • 35. Shen, Y., Chen, M., Sun, T. & Jia, J. (2015). Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar. Fuel 159, 570–579. DOI: 10.1016/j.fuel.2015.07.007.
  • 36. Tomita, A., Watanabe, Y., Takarada, T., Ohtsuka, Y. & Tamai, Y. (1985). Nickel-catalysed gasification of brown coal in a fluidized bed reactor at atmospheric pressure. Fuel 64, 795–800. DOI: 10.1016/0016-2361(85)90012-2.
  • 37. Martins, O. (1992). Loss of nitrogen compounds during composting of animal wastes. Bioresour. Technol. 42, 103–111. DOI: 10.1016/j.biortech.2008.11.027.
  • 38. Bernal, M.P., Alburquerque, J.A. & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100, 5444–5453. DOI: 10.1016/j.biortech.2008.11.027.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-698b66a2-ad53-4d45-b992-30443ef55889
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.