PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated Eco-Friendly Outdoor Cooling System – Case Study of Hot-Humid Climate Countries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research proposed an integrated eco-system for conditioning an outdoor public area (park or sport) in a hothumid environment. It is accomplished by the use of a dehumidifier control machine driven by renewable solar power; after which air is distributed throughout a ducting system. The system will harvest moisture from the air, utilize it for drinking water production and plants irrigation as well as deliver low temperature, low humidity ratio air for controlling the outdoor air, which results in a comfortable outdoor relative humidity and temperature (24 °C, 50% RH). The Integrated Eco-Friendly Cooling System (IEFCS) is a sustainable self-dependent in energy and water sources. It provides a positive impact on the microclimate of the site, assists in night illumination, supplies water for drinking, plant irrigation, and allows people to enjoy a thermally comfortable atmosphere. The advantages include low maintaining cost as well as the possibility to be scaled and implemented anywhere according to the selected location.
Rocznik
Strony
64--72
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Mechanical and Industrial Engineering, Applied Science Private University, P.O. Box 166, 11931, Amman, Jordan
  • Department of Mechanical and Industrial Engineering, Applied Science Private University, P.O. Box 166, 11931, Amman, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
  • Department of Architecture, Al-Albayt University, P. O. Box 130040, 25113, Mafraq, Jordan
  • Department of Thermal Science, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
autor
  • Department of Mechanical Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Mechanical Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
Bibliografia
  • 1. Kaboré, M., Bozonnet, E., Salagnac, P., & Abadie, M. (2018). Indexes for passive building design in urban context – indoor and outdoor cooling potentials. Energy and Buildings, 173, 315–325. doi:10.1016/j.enbuild.2018.05.04.
  • 2. Santamouris, M., Ding, L., Fiorito, F., Oldfi eld, P., Osmond, P., Paolini, R., Synnefa, A. (2017). Passive and active cooling for the outdoor built environment – Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy, 154, 14–33. doi:10.1016/j.solener.2016.12.006.
  • 3. Del Rio, M. A., Asawa, T., & Hirayama, Y. (2020). Modeling and Validation of the Cool Summer Microclimate Formed by Passive Cooling Elements in a Semi-Outdoor Building Space. Sustainability, 12(13), 5360. doi:10.3390/su12135360 .
  • 4. Kim, M.-H., & Jeong, J.-W. (2013). Cooling performance of a 100% outdoor air system integrated with indirect and direct evaporative coolers. Energy, 52, 245–257. doi:10.1016/j.energy.2013.02.008.
  • 5. Kim, M.-H., Park, J.-Y., Park, J.-S., & Jeong, J.-W. (2014). Application of desiccant systems for improving the performance of an evaporative cooling-assisted 100% outdoor air system in hot and humid climates. Journal of Building Performance Simulation, 8(3), 173–190. doi:10.1080/19401493.2014.899395.
  • 6. Ulpiani, G. (2019). Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts. Applied Energy, 254, 113647. doi:10.1016/j.apenergy.2019.11364
  • 7. Hui, S. C. M. and Cheung, W. Y., (2009). Two-stage evaporative cooling systems in hot and humid climate, In Proceedings of the Tianjin-Hong Kong Joint Symposium 2009, 29-30 Jun 2009, Tianjin, China, pp. 64-76.
  • 8. Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban spaces. The role of materials. Solar Energy, 77(2), 231–249. doi:10.1016/j.solener.2004.04.005
  • 9. Vangtook, P., & Chirarattananon, S. (2007). Application of radiant cooling as a passive cooling option in hot humid climate. Building and Environment, 42(2), 543–556. doi:10.1016/j.buildenv.2005.09.0
  • 10. Hong Yuping, Ji Shengqin, Zhang Yunhui, Kong Xiaoming, Chen Qiao, Cucchietti, F., & Gianluca Griffa. (2008). Energy saving active cooling systems for outdoor cabinet. INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference. doi:10.1109/intlec.2008.4664063
  • 11. Chàfer, M., Pisello, A. L., Piselli, C., & Cabeza, L. F. (2020). Greenery System for Cooling Down Outdoor Spaces: Results of an Experimental Study. Sustainability, 12(15), 5888. doi:10.3390/su12155888.
  • 12. Matzarakis, A., & Fröhlich, D. (2014). Sport events and climate for visitors—the case of FIFA World Cup in Qatar 2022. International Journal of Biometeorology, 59(4), 481–486. doi:10.1007/s00484-014-0886-5 .
  • 13. Budaiwi, I. M., & Abdou, A. A. (2000). Energy and thermal performance of heat pipe/cooling coil systems in hot-humid climates. International Journal of Energy Research, 24(10), 901–915. doi:10.1002/1099-114x(200008)24:103.0.co;2-s .
  • 14. American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2017. ASHRAE handbook: Fundamentals: SI edition. Atlanta, GA: ASHRAE..
  • 15. Baakeem, S. S., Orfi, J., Mohamad, A., & Bawazeer, S. (2019). The possibility of using a novel dew point air cooling system (M-Cycle) for A/C application in Arab Gulf Countries. Building and Environment, 148, 185–197. doi:10.1016/j.buildenv.2018.11.00.
  • 16. Alahmer, A., Al-Dabbas, M., Alsaqoor, S., & AlSarayreh, A. (2018). Utilizing of solar energy for extracting freshwater from atmospheric air. Applied Solar Energy, 54(2), 110-118.
  • 17. Alahmer, A., & Ajib, S. (2020). Solar cooling technologies: State of art and perspectives. Energy Conversion and Management, 214, 112896.
  • 18. Alahmer, A., Wang, X. & Alam, K.C. (2020). Dynamic and economic investigation of a solar thermal-driven two-bed adsorption chiller under Perth climatic conditions. Energies, 13(4), 1005.
  • 19. Alahmer, A., Alsaqoor, S. & Borowski, G. (2019). Effect of parameters on moisture removal capacity in the desiccant cooling systems. Case Studies in Thermal Engineering, 13, 100364.
  • 20. Ajib, S. & Alahmer, A., (2018). Solar Cooling Technologies. In Energy Conversion-Current Technologies and Future Trends. IntechOpen.
  • 21. Cattani, L., Magrini, A., & Cattani, P. (2021). Water Extraction from Air: A Proposal for a New Indicator to Compare Air Water Generators Efficiency. Energies, 14(1), 224. doi:10.3390/en14010224.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-698a0df0-c449-4b74-a28e-e8e7728d1479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.