PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composite materials consisting of carbon nanostructures and nanoforms of selected metals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this article is to present various carbon-metal nanocomposites considering their constituent elements and fabrication conditions. Design/methodology/approach: The article outlines the results of microscopic examinations performed with a scanning and transmission electron microscope, presenting composites consisting of carbon nanomaterials and selected nanostructured metals. Findings: The investigations performed indicate that high-temperature reduction and chemical reduction are the methods enabling to fabricate carbon-metal nanocomposites with the expected structure and special electrical properties. Practical implications: The newly created composites will be applied as sensors in a gas or liquid environment. It has been evidenced that some of them have also good catalytic (MWCNTs-Re) and electrochemical (MWCNTs-Rh and MWCNTs-Pd) properties. Originality/value: Summary and comparative analysis of composites being a combination of carbon materials and selected nanostructured metals.
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 81 poz.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, Materials Science and Engineering C 27/5-8 (2007) 990-993, doi: 10.1016/j.msec.2006.09.023.
  • [2] J.N. Tiwaria, R.N. Tiwarib, K.S. Kima, Zerodimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Progress in Materials Science 57/4 (2012) 724-803, doi: 10.1016/j.pmatsci.2011.08.003.
  • [3] C.C. Koch (ed.), Structural nanocrystalline materials: fundamentals and applications, Cambridge University Press, Cambridge, 2007.
  • [4] M. Auffan, J. Rose, J.-Y. Bottero, G.V. Lowry, J.P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature Nanotechnology 4 (2009) 634-641.
  • [5] E. Amstad, M. Gopinadhan, C. Holtze, C.O. Osuji, M.P. Brenner, F. Spaepen, D.A. Weitz, Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator, Science 349/6251 (2015) 956-960.
  • [6] C. Buzea, I.I. Pacheco Blandino, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases 2/4 (2007) MR17- MR172.
  • [7] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Nanocomposites composed of carbon nanotubes coated with nanocrystals of noble metals, Open Access Library V/2 (2015) 1-131 (in Polish).
  • [8] P.J.A. Borm, D. Robbins, S. Haubold, et al., The potential risks of nanomaterials: a review carried out for ECETOC, Particle and Fibre Toxicology 3/1 (2006) 1-35.
  • [9] Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science 298 (2002) 2176- 2179.
  • [10] R. Arbain, M. Othman, S. Palaniandy, Preparation of iron oxide nanoparticles by mechanical milling, Minerals Engineering 24/1 (2011) 1-9, doi: 10.1016/ j.mineng.2010.08.025.
  • [11] R.V. Hull, L. Li, Y. Xing, Ch.C. Chusuei, Pt Nanoparticle Binding on Functionalized Multiwalled Carbon Nanotubes, Chemistry of Materials 18 (2006) 1780-1788.
  • [12] S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Research in Pharmaceutic Sciences 9/6 (2014) 385-406.
  • [13] B. Wu, Y. Kuang, X. Zhang, J. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications, Nano Today 6 (2011) 75-90, doi: 10.1016/j.nantod.2010.12.008.
  • [14] V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds, Nature Nanotechnology 7/1 (2012) 11-23, doi: 10. 1038/nnano.2011.209.
  • [15] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 (1985) 162-163.
  • [16] M. Bystrzejewski, M.H. Rummeli, T. Gemming, H. Lange, A. Huczko, Catalyst-free synthesis of onion-like carbon nanoparticles, New Carbon Materials 25/1 (2010) 1-8.
  • [17] Y.A. Kim, T. Hayashi, M. Endo, M.S. Dresselhaus, Carbon nanofibers, in: R. Vajtai (ed.) Springer Handbook of Nanomaterials, Springer-Verlag, Berlin Heidelberg, Germany, 2013, 233-262.
  • [18] H. Watanabe, H. Kondo, M. Hiramatsu, M. Sekine, S. Kumar, K. Ostrikov, M. Hori, Surface Chemical Modification of Carbon Nanowalls for Wide-Range Control of Surface Wettability, Plasma Processes and Polymers 10/7 (2013) 582-592.
  • [19] Y. Chen, Y. Zhang, Y. Hu, L. Kang, S. Zhang, H. Xie, D. Liu, Q. Zhao, Q. Li, J. Zhang, State of the Art of Single-Walled Carbon Nanotube Synthesis on Surfaces, Advanced Materials 26/34 (2014) 5898- 5922.
  • [20] A. Dobrzańska-Danikiewicz, D. Cichocki, M. Pawlyta, D. Łukowiec, W. Wolany, Synthesis conditions of carbon nanotubes with the chemical vapor deposition method, Physica Status Solidi B 251/12 (2014) 2420-2425, doi: 10.1002/pssb.201451178.
  • [21] J. Guerra, M.A. Herrero, E. Vázquez, Carbon nanohorns as alternative gene delivery vectors, RSC Advances 4 (2014) 27315-27321.
  • [22] Q. Li, Y. Cao, Preparation and Characterization of Gold Nanorods, Nanorods, InTech, 2012.
  • [23] J. Zhang, Z. Zhu, Y. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K. Carlson, N.A. Fokina, P.R. Schreiner, D. Tománek, H. Shinohara, Evidence of Diamond Nanowires Formed inside Carbon Nanotubes from Diamantane Dicarboxylic Acid, Angewandte Chemie 125/13 (2013) 3805-3809.
  • [24] H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications, Journal of Materials Chemistry 22 (2012) 24230-24253.
  • [25] J.R. Rostrup-Nielsen, J. Sehested, Whisker Carbon Revisited, Studies in Surface Science and Catalysis 139 (2001) 1-12.
  • [26] S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Carbon nanocones: wall structure and morphology, Science and Technology of Advanced Materials 10 (2009) 1-6.
  • [27] P. Jagdale, J. M. Tulliani, A. Tagliaferro , A. Lopez, I. Prestini, G. Ferro, Carbon Nano Beads (CNBs): a new ingredient in reinforcing materials, Workshop IGF, Forni di Sopra (UD) (2012) 113-119.
  • [28] K. Ostrikov, Colloquium: Reactive plasmas as a versatile nanofabrication tool, Reviews of Modern Physics 77 (2005) 489-511.
  • [29] A.D. Dobrzańska-Danikiewicz, W. Wolany, D. Łukowiec, D. Cichocki, M. Burda, Various forms of platinum deposited on carbon nanotubes, Archives of Materials Science and Engineering 75/2 (2015) 53-62.
  • [30] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotechnology 4 (2009) 217-224.
  • [31] K. Kurotobi, Y. Murata, A Single Molecule of Water Encapsulated in Fullerene C60, Science 333 (2011) 613.
  • [32] R. Dattani, K.F. Gibson, S. Few, A.J. Borg, P.A. DiMaggio, J. Nelson, S.G. Kazarian, J.T. Cabral, Fullerene oxidation and clustering in solution induced by light, Journal of Colloid and Interface Science 446 (2015) 24-30.
  • [33] J. Wang, J. Enevold, L. Edman, Photochemical Transformation of Fullerenes, Advanced Functional Materials 23/25 (2013) 3220-3225.
  • [34] C. Lanzellotto, G. Favero, M.L. Antonelli, C. Tortolini, S. Cannistraro, E. Coppari, F. Mazzei, Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: Preparation, characterization and analytical applications, Biosensors and Bioelectronics 55 (2014) 430-437.
  • [35] A.S. Rettenbacher, B. Elliott, J.S. Hudson, A. Amirkhanian, L. Echegoyen, Preparation and Functionalization of Multilayer Fullerenes (Carbon Nano- Onions), Chemistry. An European Journal 12/2 (2005) 376-387.
  • [36] B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch, J. Abiade, A.L. Yarin, A. Salehi-Khojin, Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction, Nature Communications 4 (2013) 1-8.
  • [37] K. Koziol, B. Grobert. O. Boskovic, N. Yahya, Synthesis of Carbon Nanostructures by CVD Method, Advanced Structured Materials 5 (2011) 23-49.
  • [38] Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, Y. Feng, Carbon nanowalls and related materials, Journal of Materials Chemistry 14 (2004) 469-477.
  • [39] S. Xu, K. Ostrikov, J. D. Long, S. Y. Huang, Integrated plasma-aided nanofabrication facility: Operation, parameters, and assembly of quantum structures and functional nanomaterials, Vacuum 80 (2006) 621-630.
  • [40] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
  • [41] A. Krueger, Carbon Nanotubes, Carbon Materials and Nanotechnology, Wiley-VCH Verlag, Weinheim, Germany, 2010.
  • [42] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Carbon nanotubes decorating methods, Archives of Materials Science and Engineering 61/2 (2013) 53-61.
  • [43] A. Dobrzańska-Danikiewicz, D. Łukowiec, M. Pawlyta, T. Gaweł, M. Procek, Resistance changes of carbon nanotubes decorated with platinum nanoparticles in the presence of hydrogen at different and constant concentrations, Physica Status Solidi B 251/12 (2014) 2426-2431.
  • [44] A. Dobrzańska-Danikiewicz, W. Wolany, G. Benke, Z. Rdzawski, The new MWCNTs-rhenium nanocomposite, Physica Status Solidi B 251/12 (2014) 2485-2490.
  • [45] L. Liu, W. Ma, Z. Zhang, Macroscopic Carbon Nanotube Assemblies: Preparation, Properties, and Potential Applications, Small 7/11 (2011) 1504-1520, doi: 10.1002/smll.201002198.
  • [46] Q. Zhang, J.-Q. Huang, M.-Q. Zhao, W.-Z. Qian, F. Wei, Carbon Nanotube Mass Production: Principles and Processes, ChemSusChem 4/7 (2011) 864-889.
  • [47] M. Yudasaka, S. Iijima, Carbon Nanohorn, in: D.M. Guldi, N. Martín (eds.), Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications, Wiley-VCH Verlag, Weinheim, Germany, 2010.
  • [48] S. Zhu, G. Xu, Single-walled carbon nanohorns and their applications, Nanoscale 2 (2010) 2538-2549.
  • [49] B.D. Moore, L. Stevenson, A. Watt, S. Flitsch, N.J. Turner, C. Cassidy, D. Graham, Rapid and ultrasensitive determination of enzyme activities using surface-enhanced resonance Raman scattering, Nature Biotechnology 22 (2004) 1133-1138, doi: 10.1038/ nbt1003.
  • [50] J. Guerra, M.A. Herrero, E. Vázquez, Carbon nanohorns as alternative gene delivery vectors, RSC Advances 4 (2014) 27315-27321.
  • [51] Gelanfeng Nanotechnology Co., www.gelanfeng.net, 2017.
  • [52] J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): chemistry and applications, Beilstein Journal of Nanotechnology 5 (2014) 1980- 1998.
  • [53] Z. Fogarassy, M.H. Rümmeli, S. Gorantla, A. Bachmatiuk, G. Dobrika, K. Kamarás, L.P. Biróa, K. Havancsák, J.L. Lábár, Dominantly epitaxial growth of graphene on Ni (111) substrate, Applied Surface Science 314 (2014) 490-499.
  • [54] D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G.Yu, L. Jiang, W. Hu, Y.Liu, Uniform hexagonal graphene flakes and films grown on liquid copper surface, PNAS 109/21 (2012) 7992-7996.
  • [55] A. Huczko, M. Bystrzejewski, Fullerenes. 20 year later, Warsaw University Press, Warszawa, 2007 (in Polish).
  • [56] W. Strupinski, K. Grodecki, P. Caban, P. Ciepielewski, I. Jozwik-Biala, J.M. Baranowski, Formation mechanism of graphene buffer layer on SiC (0001), Carbon 81 (2015) 63-72.
  • [57] A. Gohier, T.M. Minea, S. Point, J.-Y. Mevellec, J. Jimenez, M.A. Djouadi, A. Granier, Early stages of the carbon nanotube growth by low pressure CVD and PE-CVD, Diamond and Related Materials 18/1 (2009) 61-65.
  • [58] V. Shanov, Y.H. Yun, M.J. Schulz, Synthesis and characterization of carbon nanotube materials (review), Journal of the University of Chemical Technology and Metallurgy, 41/4 (2006) 377-390.
  • [59] A.D. Dobrzańska-Danikiewicz, D. Cichocki, MWCNTs manufactured by CCVD method, in: W.I. Milne, M. Cole (eds.), Carbon nanotechnology, One Central Press, Manchester, UK, 2015, 1-30.
  • [60] T. Azami, D. Kasuya, T. Yoshitake, Y. Kubo, M. Yudasaka, T. Ichihashi, S. Iijima, Production of small single-wall carbon nanohorns by CO2 laser ablation of graphite in Ne-gas atmosphere, Carbon 45 (2007) 1364-1369.
  • [61] N. Sano, J. Nakano, T. Kanki, Synthesis of singlewalled carbon nanotubes with nanohorns by arc in liquid nitrogen. Carbon 42 (2004) 686-688.
  • [62] D.M. Gattia, M.V. Antisari, R. Marazzi, AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets, Nanotechnology 18 (2007) 255604.
  • [63] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldie, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, Journal of Materials Chemistry 17 (2007) 2679-2694, doi: 10.1039/B700857K.
  • [64] X. Peng, J. Chen, J.A. Misewich, S.S. Wong, Carbon nanotube–nanocrystal heterostructures, Chemical Society Reviews 38 (2009) 1076-1098.
  • [65] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Engineering materials surface treatment, Open Access Library 5 (2011), International OCSCO World Press, Gliwice (in Polish).
  • [66] J.H. Byeon, J. Hwang, Morphology of metallic nanoparticles as a function of deposition time in electroless deposition of metal on multi-walled carbon nanotubes, Surface & Coatings Technology 203 (2008) 357-363.
  • [67] E. Lorencon, A.S Ferlauto, S. de Oliveira, D.R. Miquita, R.R. Resende, R.G Lacerda, L.O. Ladeira, Direct production of carbon nanotubes/metal nanoparticles hybrids from a redox reaction between metal ions and reduced carbon nanotubes, ACS Applied Materials & Interfaces 1/10 (2009) 2104- 2106.
  • [68] Z. He, J. Chen , D. Liu, H. Zhou, Y. Kuang, Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diamond & Related Materials 13 (2004) 1764-1770.
  • [69] L.A. Dobrzański, M. Pawlyta, A. Krztoń, B. Liszka, C.W. Tai, W. Kwaśny, Synthesis and Characterization of Carbon Nanotubes Decorated with Gold Nanoparticles, Acta Physica Polonica A 118 (2010) 483- 486, doi: 10.12693/APhysPolA.118.483.
  • [70] M. Geoghegan, I.W. Hamley, R.W. Kelsall (eds.), Nanotechnologies, PWN, Warszawa, 2012 (in Polish).
  • [71] J.H. Lehman, M. Terrones, E. Mansfielde, K.E. Hurstf, V. Meunierg, Evaluating the characteristics of multiwall carbon nanotubes, Carbon 49/8 (2011) 2581-2602.
  • [72] K. Safarova, A. Dvorak, R. Kubinek, M. Vujtek, A. Rek, Usage of AFM, SEM and TEM for the research of carbon nanotubes, Modern Research and Educational Topics in Microscopy, FORMATEX, 2007.
  • [73] T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review, Materials Science and Engineering: B 119/2 (2005) 105-118.
  • [74] D. Łukowiec, PhD Thesis: The structure and properties of nanocomposites composed of carbon nanotubes coated with platinum nanoparticles. Silesian University of Technology, Gliwice, 2014 (in Polish).
  • [75] D. Cichocki, PhD Thesis: Research of structure and properties of carbon nanotubes decorated with rhodium and palladium nanoparticles, Silesian University of Technology. Gliwice, 2016 (in Polish).
  • [76] W. Wolany, A.D. Dobrzańska-Danikiewicz, G. Benke, Z. Rdzawski, The nanocomposite consisting of carbon nanotubes and heat-resistant noble metal and the way of its fabrication, Patent Application No P.407887, Polish Patent Office, 2014 (in Polish).
  • [77] W. Wolany, PhD Thesis: The newly developed nanocomposites consisting of nanostructured rhenium combined with carbon nanomaterials, Gliwice, 2016 (in Polish).
  • [78] A.D. Dobrzańska-Danikiewicz, W. Wolany, K. Gołombek, Microscopic and spectroscopic investigation of carbon nanotubes-rhenium nanocomposites fabricated in different conditions, Archives of Civil and Mechanical Engineering 17 (2017) 978-985, doi: 10.1016/j.acme.2017.04.008.
  • [79] A.D. Dobrzańska-Danikiewicz, W. Wolany, A rhenium review- from discovery to novel applications, Archives of Materials Science and Engineering 82/2 (2016) 70-78.
  • [80] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, W. Wolany, M. Procek, A. Sękala, MWCNT-Pt nanocomposite as the active element of harmful gas sensors, Archives of Materials Science and Engineering 81/1 (2016) 14-21.
  • [81] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, J. Kubacki, Investigations of Electron Properties of Carbon Nanotubes Decorated with Platinum Nanoparticles with Their Varying Fraction, Journal of Nanomaterials (2016) Art. No 4942398, 1-8, doi: 10.1155/ 2016/4942398.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6989d77a-083a-4d04-8298-f7989034e5f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.