Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Application of Satellite Radar Interferometry InSAR in the Modeling of Land Surface Movement Induced by Rock Mass Drainage
Języki publikacji
Abstrakty
Obniżenia powierzchni terenu są jednym z najbardziej istotnych efektów środowiskowych pompowania wody ze zbiorników podziemnych. Powstają one na skutek kompakcji ściśliwych warstw wodonośnych. W skali globalnej główną przyczyną tego zjawiska jest rosnące zapotrzebowanie na czystą wodę. Przemieszczenia powierzchni terenu powstałe na skutek odwodnienia górotworu mogą przyjmować sumaryczne wartości nawet do kilkunastu metrów. Zasięg tego zjawiska jest zazwyczaj rozległy i trudny do jednoznacznego zdefiniowania. Kompakcja warstw wodonośnych spowodowana odwodnieniem górotworu przyczynia się do powstania szeregu niekorzystnych zjawisk o wymiarze społeczno-ekonomicznym i znacznych kosztach naprawczych. Obecnie wyróżnić można wiele metod, które wykorzystywane są w celu analizy i symulacji kompakcji warstw wodonośnych. Rozwiązania te pozwalają na uzyskanie zadowalających wyników modelowania. Są jednak one często mało efektywne i czasochłonne. Z tego względu wskazuje się na konieczność prowadzenia dalszych badań, które umożliwią bardziej skuteczne modelowanie kompakcji warstw wodonośnych. W ostatnich kilkunastu latach obserwowany jest gwałtowny rozwój InSAR. Przyczynił się on do znaczącego postępu w zakresie monitoringu i określania rozkładu czasowo-przestrzennego odwodnieniowych przemieszczeń powierzchni terenu w wielu regionach świata. Stąd, implementacja wyników pomiarów opartych o tę technologię może stanowić znaczny potencjał dla budowy bardziej efektywnych modeli kompakcji warstw wodonośnych. Celem niniejszego artykułu jest podsumowanie implementacji InSAR w ciągu ostatnich kilku lat dla wsparcia procesu modelowania kompakcji warstw wodonośnych na skutek drenażu górniczego.
Land subsidence is one of groundwater pumping probably the most evident environemntal effects. This phenomenon is induced by the dewatering of susceptible aquifer systems. Globally, freshwater demand is the leading cause of this phenomenon. Land subsidence induced by aquifer system drainage can reach total values up several meters. The spatial extension of the phenomenon is usually extensive and often difficult to define clearly. Aquifer compaction contributes to many socio-economic effects and high infrastructure=related damage costs. Currently, many methods are used to analyze aquifer compaction. Such solutions enable satisfactory modelling results. However, further research is needed to allow more efficient modelling of aquifer compaction. Recently, InSAR has contributed to significant progress in monitoring and determining the spatio-temporal land subsidence distributions worldwide. Therefore, implementation of this approach can pave the way to develop more efficient aquifer compaction models. This paper presents a summary of InSAR implementation over recent years to support the aquifer compaction modelling process.
Czasopismo
Rocznik
Tom
Strony
13--25
Opis fizyczny
Bibliogr. 79 poz., rys., wykr.
Twórcy
autor
- Akademia Górniczo-Hutnicza w Krakowie
autor
- Akademia Górniczo-Hutnicza w Krakowie
autor
- Akademia Górniczo-Hutnicza w Krakowie
autor
- Akademia Górniczo-Hutnicza w Krakowie
Bibliografia
- [1] ALLIS R., BROMLEY C., CURRIE S. 2009 - Update on subsidence at the Wairakei-Tauhara geothermal system, New Zeali, Geothermics. Pergamon, 38(1), s. 169–180. doi: 10.1016/j.geothermics.2008.12.006.
- [2] ALLISON M. i in. 2016 - Global Risks i Research Priorities for Coastal Subsidence, EOS. doi: 10.1029/2016eo055013.
- [3] AMITRANO D. i in. 2014 - Sentinel-1 for monitoring reservoirs: A performance analysis, Remote Sensing. doi: 10.3390/rs61110676.
- [4] AOBPAET A. i in. 2013 - InSAR time-series analysis of li subsidence in Bangkok, Thaili, International Journal of Remote Sensing. doi: 10.1080/01431161.2012.756596.
- [5] BÉJAR-PIZARRO M. i in. 2017 - Mapping groundwater level i aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain, Journal of Hydrology. doi: 10.1016/j.jhydrol.2017.02.011.
- [6] BERARDINO P. i in. 2002 - A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Transactions on Geoscience i Remote Sensing, 40(11), s. 2375–2383. doi: 10.1109/TGRS.2002.803792.
- [7] BONÌ R. i in. 2015 - Twenty-year advanced DInSAR analysis of severe li subsidence: The Alto Guadalentín Basin (Spain) case study, Engineering Geology. doi: 10.1016/j.enggeo.2015.08.014.
- [8] BONÌ R. i in. 2016a - Characterisation of hydraulic head changes i aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data, Journal of Hydrology. Elsevier B.V., 540, s. 835–849. doi: 10.1016/j.jhydrol.2016.06.068.
- [9] BONÌ R. i in. 2016b - Characterisation of hydraulic head changes i aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data, Journal of Hydrology. Elsevier B.V., 540, s. 835–849. doi: 10.1016/j.jhydrol.2016.06.068.
- [10] BONÌ R. i in. 2017 - Exploitation of Satellite A-DInSAR Time Series for Detection, Characterization i Modelling of Li Subsidence, Geosciences. MDPI, 7(2), p. 25. doi: 10.3390/geosciences7020025.
- [11] BOZZANO F. i in. 2015 - Understiing the subsidence process of a quaternary plain by combining geological i hydrogeological modelling with satellite InSAR data: The Acque Albule Plain case study, Remote Sensing of Environment. doi: 10.1016/j.rse.2015.07.010.
- [12] Canadian Space Agency 2020 - RADARSAT Constellation Mission - Canada. ca. Dostęp: https://www.asc-csa.gc.ca/eng/satellites/radarsat/default.asp (Ostatni dostęp: 22.03.2020).
- [13] CANUTI P. i in. 2005 - Li subsidence in the Arno River Basin studied through SAR interferometry, w Li Subsidence--Proceedings of the Seventh International Symposium on Li Subsidence (Vol. Ⅰ). Dostęp: https://www.researchgate.net/publication/309347577_Li_subsidence_in_the_Arno_river_basin_studied_through_SAR_interferometry (Ostatni dostęp: 22.03.2020).
- [14] CASTELLAZZI P. i in. 2016 - Li subsidence in major cities of Central Mexico: Interpreting InSAR-derived li subsidence mapping with hydrogeological data, International Journal of Applied Earth Observation i Geoinformation. doi: 10.1016/j.jag.2015.12.002.
- [15] CHAUSSARD E. i in. 2014 - Predictability of hydraulic head changes i characterization of aquifer-system i fault properties from InSARderived ground deformation, Journal of Geophysical Research: Solid Earth. Blackwell Publishing Ltd, 119(8), s. 6572–6590. doi: 10.1002/2014JB011266.
- [16] CHAUSSARD E. i in. 2017 - Remote Sensing of Ground Deformation for Monitoring Groundwater Management Practices: Application to the Santa Clara Valley During the 2012–2015 California Drought, Journal of Geophysical Research: Solid Earth. Blackwell Publishing Ltd, 122(10), s. 8566–8582. doi: 10.1002/2017JB014676.
- [17] CHEN J. i in. 2016 - Confined aquifer head measurements i storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations, Water Resources Research. doi: 10.1002/2015WR018466.
- [18] CROSETTO M. i in. 2016 - Persistent Scatterer Interferometry: A review, ISPRS Journal of Photogrammetry i Remote Sensing. Elsevier B.V., 115, s. 78–89. doi: 10.1016/j.isprsjprs.2015.10.011.
- [19] DUTCHER I. C. Garrett A. A. 1963 - Geologic i Hydrologic Features of the San Bernardino Area, California, Geologic Survey Water-Supply Paper 1419, Water Supply Paper, s. 111. doi: 10.3133/wsp1419.
- [20] EHLEN J. i in. 2007 - Impacts of li subsidence caused by withdrawal of underground fluids in the United States, in Humans as Geologic Agents. Geological Society of America, s. 87–99. doi: 10.1130/2005.4016(08).
- [21] ERKENS G. i in. 2015 - Sinking coastal cities, in Proceedings of the International Association of Hydrological Sciences. doi: 10.5194/piahs-372-189-2015.
- [22] European Space Agency 2014a - Envisat - ESA Earth Online, European Space Agency - Earth Online. Dostęp: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers (Ostatni dostęp: 22.03.2020).
- [23] European Space Agency 2014b - ERS - ESA Earth Online, European Space Agency - Earth Online. Dostęp: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat (Ostatni dostęp: 22.03.2020).
- [24] European Space Agency 2015 - COSMOSky-MED. Dostęp: https://earth.esa.int/web/eoportal/satellite-missions/c-missions/cosmo-skymed (Ostatni dostęp: 22.03.2020).
- [25] European Space Agency 2020a - Sentinel-1 - Missions - Sentinel Online, European Space Agency - Earth Online. Dostęp: https://sentinel.esa.int/web/sentinel/missions/sentinel-1 (Ostatni dostęp: 21.03.2020).
- [26] European Space Agency 2020b - TSX (TerraSAR-X) - eoPortal Directory - Satellite Missions. Dostęp: https://earth.esa.int/web/eoportal/satellite-missions/t/terrasar-x (Ostatni dostęp: 22.03.2020).
- [27] Ezquerro P. i in. 2014 - A quasi-elastic aquifer deformational behavior: Madrid aquifer case study, Journal of Hydrology. doi: 10.1016/j.jhydrol.2014.08.040.
- [28] Ezquerro P. i in. 2017 - Groundwater i subsidence modeling combining geological i multi-satellite SAR data over the alto guadalentín aquifer (SE Spain), Geofluids. doi: 10.1155/2017/1359325.
- [29] Famiglietti J. S. i in. 2011 - Satellites measure recent rates of groundwater depletion in Californias Central Valley, Geophysical Research Letters. doi: 10.1029/2010GL046442.
- [30] FERRETTI A., FUMAGALLI A., i in. 2011 - A new algorithm for processing interferometric data-stacks: SqueeSAR, IEEE Transactions on Geoscience i Remote Sensing, 49(9), s. 3460–3470. doi: 10.1109/TGRS.2011.2124465.
- [31] FERRETTI A., TAMBURINI, A., i in. 2011 - Impact of high resolution radar imagery on reservoir monitoring, Energy Procedia. Elsevier Ltd, 4, s. 3465–3471. doi: 10.1016/j.egypro.2011.02.272.
- [32] FERRETTI A., PRATI, C. I ROCCA, F. 2001 - Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience i Remote Sensing. IEEE, 39(1), s. 8–20. doi: 10.1109/36.898661.
- [33] GABRIEL A. K., GOLDSTEIN R. M., I ZEBKER, H. A. 1989 - Mapping small elevation changes over large areas: differential radar interferometry, Journal of Geophysical Research. John Wiley & Sons, Ltd, 94(B7), s. 9183–9191. doi: 10.1029/JB094iB07p09183.
- [34] GALLOWAY D. L. i in. 1998 - Detection of aquifer system compaction i li subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California, Water Resources Research. American Geophysical Union, 34(10), s. 2573–2585. doi: 10.1029/98WR01285.
- [35] GALLOWAY D. L., BURBEY T. J. 2011 - Review: Regional li subsidence accompanying groundwater extraction, Hydrogeology Journal. Springer, 19(8), s. 1459–1486. doi: 10.1007/s10040-011-0775-5.
- [36] GALLOWAY D. L., HOFFMANN J. 2007 - The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology, Hydrogeology Journal. Springer, 15(1), s. 133–154. doi: 10.1007/s10040-006-0121-5.
- [37] GAMBOLATI G. i in. 1991 - Mathematical Simulation of the Subsidence of Ravenna, Water Resources Research. John Wiley & Sons, Ltd, 27(11), s. 2899–2918. doi: 10.1029/91WR01567.
- [38] GAMBOLATI G., TEATINI P. 2015 - Geomechanics of subsurface water withdrawal i injection, Water Resources Research. John Wiley & Sons, Ltd, 51(6), s. 3922–3955. doi: 10.1002/2014WR016841.
- [39] Ghiglia D. C. Pritt M. D. 1998 - Two-dimensional phase unwrapping: theory, algorithms, i software, J Investig Dermatol. Wiley. Dostęp: http://books.google.com/books?id=pQtTAAAAMAAJ (Ostatni dostęp: 20.03.2020).
- [40] GUO L. i in. 2019 - Analysis of the spatiotemporal variation in li subsidence on the Beijing Plain, China, Remote Sensing. doi: 10.3390/rs11101170.
- [41] HANSSEN R. F. 2001 - Radar Interferometry, Data Interpretation i Error Analysis. Dordrecht, the Netherlis: Kluwer Academic Publishers. Dostęp: https://www.researchgate.net/publication/27343576_Radar_Interferometry_Data_Interpretation_i_Error_Analysis (Ostatni dostęp: 13.03.2020).
- [42] HEJMANOWSKI R. i in. 2013 - Wpływ odwodnienia górotworu węglowego na osiadanie powierzchni terenu, „Przegląd Górniczy”, T. 69, nr.
- [43] HEJMANOWSKI R. WITKOWSKI W. T. 2015 - Suitability assessment of artificial neural network to approximate surface subsidence due to rock mass drainage, Journal of Sustainable Mining. doi: 10.1016/j.jsm.2015.08.014.
- [44] HERRERA G. i in. 2010 - Analysis of subsidence using TerraSAR-X data: Murcia case study, Engineering Geology. doi: 10.1016/j.enggeo. 2010.09.010.
- [45] HOFFMANN J. i in. 2001 - Seasonal subsidence i rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry, Water Resources Research, 37(6), s. 1551–1566. doi: 10.1029/2000WR900404.
- [46] HOFFMANN J., GALLOWAY, D. L., ZEBKER H. A. 2003 - Inverse modeling of interbed storage parameters using li subsidence observations, Antelope Valley, California, Water Resources Research. doi: 10.1029/2001WR001252.
- [47] HONGDONG F. i in. 2011 - Li subsidence monitoring by D-InSAR technique, Mining Science i Technology. China University of Mining i Technology, 21(6), s. 869–872. doi: 10.1016/j.mstc.2011.05.030.
- [48] HOOPER A. i in. 2012 - Recent advances in SAR interferometry time series analysis for measuring crustal deformation, Tectonophysics. Elsevier, s. 1–13. doi: 10.1016/j.tecto.2011.10.013.
- [49] HOOPER A. J. 2008 - A multi-temporal InSAR method incorporating both persistent scatterer i small baseline approaches, Geophysical Research Letters. doi: 10.1029/2008GL034654.
- [50] HU B., CHEN X., ZHANG X. 2019 - Using multisensor SAR datasets to monitor li subsidence in Los Angeles from 2003 to 2017, Journal of Sensors. doi: 10.1155/2019/9389820.
- [51] JAFARI F. i in. 2016 - Numerical simulation of groundwater flow i aquifer-system compaction using simulation i InSAR technique: Saveh basin, Iran, Environmental Earth Sciences. doi: 10.1007/s12665-016-5654-x.
- [52] JIANG L. i in. 2018 - Combining InSAR i Hydraulic Head Measurements to Estimate Aquifer Parameters i Storage Variations of Confined Aquifer System in Cangzhou, North China Plain, Water Resources Research. doi: 10.1029/2017WR022126.
- [53] JONES C. E. i in. 2016 - Anthropogenic i geologic influences on subsidence in the vicinity of New Orleans, Louisiana, Journal of Geophysical Research: Solid Earth. doi: 10.1002/2015JB012636.
- [54] KOPEĆ A., KWINTA A. 2019 - Osiadanie powierzchni terenu z tytułu sczerpywania wody - wyznaczanie technikami InSAR, „Przegląd Górniczy”, T. 75, nr 1.
- [55] KOWALSKI A. 2020 - Deformacje powierzchni na terenach górniczych kopalń węgla kamiennego. Główny Instytut Górnictwa. Katowice.
- [56] MAHMOUDPOUR M. i in. 2013 - Characterization of regional li subsidence induced by groundwater withdrawals in Tehran, Iran, JGeope. doi: 10.22059/JGEOPE.2013.36014.
- [57] Maps – UNESCO Li Subsidence International Initiative - 2020. Dostęp: https://www.lisubsidence-unesco.org/maps/ (Ostatni dostęp: 2.06.2020).
- [58] MASSONNET D., FEIGL K. L. 1998 - Radar interferometry and its application to changes in the earths surface, Reviews of Geophysics. Blackwell Publishing Ltd, 36(4), s. 441–500. doi: 10.1029/97RG03139.
- [59] MEHRABI H. i in. 2019 - Three-dimensional displacement fields from insar through tikhonov regularization i least-squares variance component estimation, Journal of Surveying Engineering. American Society of Civil Engineers (ASCE), 145(4). doi: 10.1061/(ASCE)SU.1943-5428.0000289.
- [60] MORA O., MALLORQUI J. J., BROQUETAS A. 2003 - Linear i nonlinear terrain deformation maps from a reduced set of interferometric SAR images, IEEE Transactions on Geoscience i Remote Sensing, 41(10 PART I), s. 2243–2253. doi: 10.1109/TGRS.2003.814657.
- [61] MORISHITA Y. i in. 2020 - LiCSBAS: An open-source insar time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor, Remote Sensing. MDPI, 12(3), p. 424. doi: 10.3390/rs12030424.
- [62] ORTEGA-GUERRERO A., RUDOLPH D. L., CHERRY J. A. 1999 - Analysis of long-term li subsidence near Mexico City: Field investigations i predictive modeling, Water Resources Research. John Wiley & Sons, Ltd, 35(11), s. 3327–3341. doi: 10.1029/1999WR900148.
- [63] PIROUZI A., ESLAMI A. 2017 - Ground subsidence in plains around Tehran: site survey, records compilation i analysis, International Journal of Geo-Engineering. doi: 10.1186/s40703-017-0069-4.
- [64] REZAEI A., MOUSAVI Z. 2019 - Characterization of li deformation, hydraulic head, i aquifer properties of the Gorgan confined aquifer, Iran, from InSAR observations, Journal of Hydrology. doi: 10.1016/j.jhydrol.2019.124196.
- [65] SAMIEIE-ESFAHANY S. i in. 2010 - On the effect of horizontal deformation on InSAR subsidence estimates, Proceedings of Fringe 2009 Workshop, 2009(March), s. 1–7. Dostęp: https://www.researchgate.net/publication/259609665_ON_THE_EFFECT_OF_HORIZONTAL_DEFORMATION_ON_INSAR_SUBSIDENCE_ESTIMATES (Ostatni dostęp: 22.03.2020).
- [66] SCHMIDT D. A. BÜRGMANN R. 2003 - Time-dependent li uplift i subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, Journal of Geophysical Research: Solid Earth. American Geophysical Union (AGU), 108(B9). doi: 10.1029/2002jb002267.
- [67] SHI X. Q. i in. 2007 - Characterization of li subsidence induced by groundwater withdrawals in Su-Xi-Chang area, China, Environmental Geology. Springer, 52(1), s. 27–40. doi: 10.1007/s00254-006-0446-3.
- [68] SZCZEPIŃSKI J. 2019 - The significance of groundwater flow modeling study for simulation of opencast mine dewatering, flooding, i the environmental impact, Water. doi: 10.3390/w11040848.
- [69] TEATINI P. i in. 2006 - Groundwater pumping i li subsidence in the Emilia-Romagna coastli, Italy: Modeling the past occurrence i the future trend, Water Resources Research. John Wiley & Sons, Ltd, 42(1). doi: 10.1029/2005WR004242.
- [70] THOANG T. T., GIAO P. H. 2015 - Subsurface characterization i prediction of li subsidence for HCM City, Vietnam, Engineering Geology. doi:10.1016/j.enggeo.2015.10.009.
- [71] TOMAS R. i in. 2011 - Persistent Scatterer Interferometry subsidence data exploitation using spatial tools: The Vega Media of the Segura River Basin case study, Journal of Hydrology. doi: 10.1016/j.jhydrol.2011.01.057.
- [72] University C. for I. E. S. I. N.-C.-C. 2018 - Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data i Applications Center (SEDAC). Dostęp: https://doi.org/10.7927/H49C6VHW.
- [73] WEISSENBERGER S. CHOUINARD O. 2015 - Adaptation to Climate Change i Sea Level Rise. doi: 10.1007/978-94-017-9888-4.
- [74] WERNER C. i in. 2003 - Interferometric Point Target Analysis for Deformation Mapping, w International Geoscience i Remote Sensing Symposium (IGARSS), s. 4362–4364. doi: 10.1109/igarss.2003.1295516.
- [75] WHITTAKER B. N., REDDISH D. J. 1989 - Subsidence: occurrence, prediction, i control. Elsevier.
- [76] YANG Y. i in. 2015 - Research of features related to li subsidence i ground fissure disasters in the Beijing Plain, in Proceedings of the International Association of Hydrological Sciences. doi: 10.5194/piahs-372-239-2015.
- [77] ZEBKER H. A., ROSEN, P. A., HENSLEY, S. 1997 - Atmospheric effects in interferometric synthetic aperture radar surface deformation i topographic maps, Journal of Geophysical Research: Solid Earth. American Geophysical Union (AGU), 102(B4), s. 7547–7563. doi: 10.1029/96jb03804.
- [78] ZHOU C. i in. 2018 - Spatiotemporal evolution of li subsidence in the Beijing Plain 2003-2015 using persistent scatterer interferometry (PSI) with multi-source SAR data, Remote Sensing. doi: 10.3390/rs10040552.
- [79] ZHOU X., CHANG N., BIN, LI S. 2009 - Applications of SAR interferometry in earth i environmental science research, Sensors. Molecular Diversity Preservation International, 9(3), s. 1876–1912. doi: 10.3390/s90301876.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6989ae87-14e0-4f45-bc82-fb6be7197a75