Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We develop a physico-mathematical model of the “eddy current probe - test object” (ECP-TO) system that analytically describes current dynamics in coupled probe circuits while accounting for key physical and electrical parameters. The model, derived from the characteristic equation of transformer-type configurations for nonmagnetic and magnetic targets, explains when the measured response is harmonic or damped harmonic as a function of excitation mode and system parameters, thereby revealing additional informative features for material evaluation. We validate the model numerically using finite element (FEM) simulations (COMSOL, Magnetic Fields, frequency domain) and introduce a digital signal-processing workflow that extracts instantaneous amplitude- and phase-time characteristics during scanning. Experiments on aluminum alloy specimens demonstrate sensitivity to small conductivity variations and identify optimal excitation frequencies for reliable subsurface defect detection; in the tested configuration, an “infinitely deep crack” was detectable to 15.3 mm at 50 Hz. The combined analytical-numerical-experimental approach supports sensitivity-driven ECP design, accelerates inspection parameter selection, and facilitates integration with structural health monitoring (SHM) systems for aerospace structures.
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 14 poz., rys., wzory
Twórcy
autor
- Department of Automation and Non-Destructive Testing Systems, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Prospect Beresteiskyi, Kyiv 03056, Ukraine
autor
- Department of Automation and Non-Destructive Testing Systems, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Prospect Beresteiskyi, Kyiv 03056, Ukraine
- General Energy Institute of NAS of Ukraine, 172 Antonovycha St., Kyiv 03150, Ukraine
autor
- Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv 79060, Ukraine
autor
- Institute of Mechanics at the Bulgarian Academy of Sciences, 4 Acad. G. Bonchev St., Sofia 1113, Bulgaria
Bibliografia
- [1] Udpa L, Moore PO, editors. Electromagnetic Testing (ET). In: Nondestructive Testing Handbook. 3rd ed. Vol 5. Columbus (OH): American Society for Nondestructive Testing; 2004.
- [2] García-Martín J, Gomez-Gil J, Vázquez-Sánchez E. Non-destructive techniques based on eddy current testing. Sensors. 2011;11(3):2525-65. Available from: https://doi.org/10.3390/s110302525
- [3] Goldfine N, Schlicker D, Sheiretov Y, Washabaugh A, Zilberstein V, Grundy D. Surface mounted and scanning periodic-field eddy-current sensors for structural health monitoring. In: Proceedings of the IEEE Aerospace Conference; 2002 Mar 9-16; Big Sky, MT. Piscataway (NJ): IEEE; 2002. p 1-6. Available from: https://doi.org/10.1109/AERO.2002.1036155
- [4] Sophian A, Tian GY, Taylor D, Rudlin J. A feature extraction technique based on principal component analysis for pulsed eddy current NDT. NDT E Int. 2003;36:37-41. Available from: https://doi.org/10.1016/S0963-8695(02)00069-5
- [5] Song M, Li M, Xiao S, Ren J. Influence of geometric structure parameters of Eddy current testing probe on sensor resolution. Sensors. 2023;23(14):6610. Available from: https://doi.org/10.3390/s23146610
- [6] Libby HL. Introduction to electromagnetic nondestructive test methods. New York: Wiley-Interscience; 1971.
- [7] Uchanin V. Eddy current techniques for detecting hidden subsurface defects in multilayer aircraft structures. Trans Aerospace Res. 2022;2:69-79. Available from: https://doi.org/10.2478/tar-2022-0011
- [8] Dudziak K, Stawicki K, Brykalski A. Optimization of the eddy current transducer using COMSOL Multiphysics and MATLAB software. ITM Web Conf. 2018;19:01004. Available from: https://doi.org/10.1051/itmconf/20181901004
- [9] Kyrgiazoglou A, Theodoulidis T. Simulation of eddy current nondestructive testing using COMSOL® Multiphysics. In: COMSOL Conference Proceedings; 2017 Nov; Rotterdam, Netherlands. Stockholm (Sweden): COMSOL AB; 2017.
- [10] Edminister JA. Electric Circuits. 6th ed. Schaum’s Outline Series. New York: McGraw-Hill Education; 2016. ISBN: 978-1259587694.
- [11] Hayt WH, Kemmerly JE, Durbin SM. Engineering Circuit Analysis. 9th ed. New York: McGraw-Hill Education; 2018. ISBN: 978-1259853485.
- [12] Lysenko I, Kuts Y, Petryk V, Malko V, Melnyk A. Automated eddy current system for aircraft structure inspection. Trans Aerospace Res. 2023;4:33-40. Available from: https://doi.org/10.2478/tar-2023-0021
- [13] Lysenko I, Kuts Y, Uchanin V, Protasov A, Redka M. Enhanced feature-extraction algorithms using oscillatory-mode pulsed eddy current techniques for aircraft structure inspection. Trans Aerospace Res. 2021;3:1-16. Available from: https://doi.org/10.2478/tar-2021-0013
- [14] Uchanin V, Lysenko I, Kuts Y, Mirchev Y. Investigation of the impact of limited penetration depth on the effectiveness of eddy current testing of aluminum alloys. Int J NDT Days. 2024;7(4):213-17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-697d7ad8-db6e-4c1e-b8bb-a1db8e341b8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.