PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Storage of hydrogen in activated carbons and carbon nanotubes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Activated carbons and carbon nanotube were synthesized with chemical and microwave processes of olive leaf in media with and without ultrasonic waves, and chemical vapor deposition method, respectively. The samples were characterized by x-ray diffraction, calorimetry, Brunauer, Emmett and Teller method, scanning electron microscopy/energy-dispersive X-ray, and zetasizer nano S90 instruments. The activated carbon synthesized in the ultrasonic bath had a higher surface area. The hydrogen adsorption capacity of carbon structures including activated carbons and carbon nanotube was measured as a function of pressure at 77 K. The hydrogen storage capacity of the carbon nanotube is 300% and 265% higher than the hydrogen storage capacity of activated carbons synthesized in medium without and with ultrasonic waves, respectively. Results showed the correlation between hydrogen storage capacity and specific surface area. The highest H2 storage value was obtained with carbon nanotube at 77 K. As a result, activated carbon and carbon nanotube can be used in hydrogen storage and therefore, the olive leaf can be converted into a high added value product in the energy field.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 35 poz., wykr., tab.
Twórcy
autor
  • Balıkesir Açı College, Çayırhisar District, Altıeylül/Balıkesir, Turkey
autor
  • Balıkesir Açı College, Çayırhisar District, Altıeylül/Balıkesir, Turkey
  • Balikesir University Science and Technology Application and Research Center, Çağış/Balikesir, Turkey
Bibliografia
  • 1. Barbir F., Hydrogen. International association for hydrogen energy. www.ihae.org. (2015).
  • 2. Mormillan M., Veziroglu T.N., Current status of hydrogen energy. 6 (2002) 141-179.
  • 3. Ramage J., Energy: A Guidebook. 1st ed. New York: Oxford University Press, 1983
  • 4. Bouza A., Petrovic J., Read C., Satyapal S., Milliken J., The national hydrogen storage project. ACS Division of Fuel Chemistry. 49 2 (2004) 839.
  • 5. Yang J., Sudik A., Wolverton C., Siegel D.J., High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews. 39 (2010) 656-675.
  • 6. Strobel R., Garche J., Moseley P.T., Jorissen L., Wolf G., Hydrogen storage by carbon materials. Journal of Power Sources. 159 (2006) 781-801.
  • 7. Iijima S., Helical microtubules of graphitic carbon. Nature. 354 6348 (1991) 56-58.
  • 8. Oyetade O.A., Nyamori V.O., Martincigh B.S., Jonnalagadda S.B., Effectiveness of carbon nanotube–cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions. RSC Advances. 5 (2015) 22724–22739.
  • 9. Ombaka L.M., Ndungu P.G., Nyamori V.O., Pyrrolic nitrogen-doped carbon nanotubes: physicochemical properties, interactions with Pd and their role in the selective hydrogenation of nitrobenzophenone. RSC Advances. 5 (2014) 109–122.
  • 10. Zabet M., Moradian S., Ranjbar Z., Zanganeh., Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings. J. Coat. Technol. Res. 13 1 (2016) 191–200.
  • 11. Thakare J.G., Pandey C., Mulik R.S., Mahapatra M.M., Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceramics International. 44 (2018) 6980–6989.
  • 12. Esawi A.M.K., Morsi K., Sayed A., Taher M., Lanka S., Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology. 70 (2010) 2237–2241.
  • 13. Dillon A.C., Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S., Heben M.J., Storage of hydrogen in single-walled carbon nanotubes. Nature. 386 (1997) 377-8.
  • 14. Dillon A.C., Gennet T., Alleman J.L., Jones K.M., Parilla P.A., Heben M.J., Carbon nanotube materials for hydrogen storage. Proceedings of the 2000 U.S. DOE Hydrogen Program Review. 2 (2000) 421-440.
  • 15. Darkrim F.L., Malbrunot P., Tartaglia G.P., Review of hydrogen storage by adsroption in carbon nanotubes. International Journal of Hydrogen Energy. 27 2 (2002) 193-202.
  • 16. Kaushik B.K., Majumder M.K., Carbon nanotube based VLSI interconnects. Springer Briefs in Applied Sciences and Technology. DOI 10.1007/978-81-322-2047-3_1, 17-37.
  • 17. Chambers A., Park C., Baker R.T.K., Rodriguez N.M., Hydrogen storage in graphite nanofibers. The Journal of Physical Chemistry B. 102 22 (1998) 4253-4256.
  • 18. Nishimiya N., Ishigaki K., Takikawa H., Ikeda M., Hibi Y., Sakakibara T., Matsumoto A., Tsutsumi K., Hydrogen sorption by single-walled carbon nanotubes prepared by a torch arc method. Journal of Alloys and Compounds. 339 (2002) 275-282.
  • 19. Smith M.R., Bittner E.W., Shi W., Johnson J.K., Bockrath B.C., Chemical activation of single-walled carbon nanotubes for hydrogen adsorption. The Journal of Physical Chemistry B. 107 16 (2003) 3752-3760.
  • 20. Silambasaran D., Surya V.J., Vasu V., Iyakutti K., Experimental investigation of hydrogen storage in single walled carbon nanotubes functionalized with borane. International Journal of Hydrogen Energy. 36 (2011) 3574-9.
  • 21. Rashidi A.M., Nouralishahi A., Khodadadi A.A., Mortazavi Y., Karimi A., Kashefi K., Modification of single wall carbon nanotubes (SWNT) for hydrogen storage. International of Hydrogen Energy. 35 (2010) 9489-9495.
  • 22. Mosquera E., Diaz-Droguett D.E., Carvajal N., Roble M., Morel M., Espinoza R., Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method. Diamond and Related Materials. 43 (2014) 66-71.
  • 23. Lee S., Park S., Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors. Journal of Solid State Chemistry. 194 (2012) 307-312.
  • 24. Barghi S.H., Tsotsis T.T., Sahimi M., Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. International Journal of Hydrogen Energy. 39 (2014) 1390-1397.
  • 25. Lin K., Mai Y., Li S., Shu C., Wang C., Characterization and hydrogen storage of surface-modified multiwalled carbon nanotubes for fuel cell application. Journal of Nanomaterials. 939683 (2012) 1-12.
  • 26. Rakhia R.B., Sethupathib K., Ramaprabhua S., Synthesis and hydrogen storage properties of carbon nanotubes. International Journal of Hydrogen Energy. 33 (2008) 381-386.
  • 27. Karatepe N., Özyuğuran A., Yavuz R., Karbon yapılı malzemelerin hidrojen depolanmasında kullanımı. Dünya Enerji Konseyi Türk Milli Komitesi Türkiye 10. Enerji Kongresi. (2006) 407-416.
  • 28. Kidnay A.J., Hiza M.J., High pressure adsorption isotherms of neon, hydrogen, and helium at 76o. Advances in Cryogenic Engineering. 12 (1966) 730-740.
  • 29. Jimenez V., Sanchez P., Diaz J.A., Valverde J.L., Romero A., Hydrogen storage capacity on different carbon materials. Chemical Physics Letters. 485 (2010) 152-155.
  • 30. Jorda-Beneyto M., Suarez-Garcia F., Lozano-Castello D., Cazorla-Amoros D., Linares-Solano A., Hyrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon. 45 2 (2007) 293-303.
  • 31. Akasaka H., Takahata T., Toda I., Ono H., Ohshio S., Himeno S., Kokubu T., Saitoh, H., Hydrogen storage ability of porous carbon material fabricated from coffee bean wastes. International Journal of Hydrogen Energy. 36 1 (2011) 580-585.
  • 32. Chang Y.M., Tsai W.N., Li M.H., Characterization of activated carbon prepared from chlorella-based algal residue. Bioresource Technology. 184 (2015) 344–348.
  • 33. Tekin N., Kara A., Beyaz S.K., Şimşek E., Çakmak G., Güney H.Y., Lamari F.D., Solubility and electrical properties of multiwalled carbon nanotubes/poly(1-vinyl-1-2-4-triazole) composite via in situ functionalization. Polymer-Plastics Technology and Engineering. 53 (2014) 1-11.
  • 34. Atkinson K., Roth S., Hirscher M., Grünwald W., Carbon nanostructures: An efficient hydrogen storage medium for fuel cells. Fuel Cells Bulletin. 4 38 (2001) 9-12.
  • 35. Hirscher M., Becher M., Haluska M., Quintel A., Skakalova V., Choi Y.M., Dettlaff-Weglikowska U., Roth S., Stepanek I., Bernier P., Leonhardt A., Fink J., Hydrogen storage in carbon nanostructures. Journal of Alloys and Compounds. (2002) 330-332, 654-658.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-697a7a12-09e6-4770-9278-94a1cabd9541
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.