PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential extraterrestrial sources of lithium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Extracting raw materials from extraterrestrial sources is a prerequisite for the expansion of our civilization into space. It will be necessary to acquire there practically all commonly used elements – including lithium. The most valuable source of this element currently appears to be lunar soil and rocks, especially K-rich rocks and breccias (>10 ppm of Li). Among the meteorites, the highest content of lithium is characterized by lunar mare basalts and gabbro, eucrites, Martian polymict breccia, nakhlites, howardites (>5 ppm), shergottites, chassignites, lunar anorthosites breccias, mesosiderites, ureilites (>2.5 ppm), diogenites, LL, angrites, H (>2 ppm), L, CM, CO, CV, EH, CI (>1.5 ppm), brachinites, aubrites, EL, CR (>1 ppm), CK and main-group pallasites (<1 ppm). This means that a potential extraterrestrial source of lithium can be the Moon, Mars, and the 4 Vesta minor planet considered as the probable parent body of HED meteorites.
Słowa kluczowe
Rocznik
Strony
195--203
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Geoengineering, Mining and Geology; Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Barrat, J.A., Chaussidon, M., Bohn, M., Gillet, Ph., Göpel, C., Lesourd, M., 2005. Lithium behavior during cooling of a dry basalt: an ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479). Geochimica et Cosmochimica Acta, 69: 5597-5609.
  • 2. Beck, P., Chaussidon, M., Barrat, J.A., Gillet, Ph., Bohn, M., 2006. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochimica et Cosmochimica Acta, 70: 4813-4825.
  • 3. Boesgaard, A.M., 1976. Stellar abundances of lithium, beryllium, and boron. Astronomical Society of the Pacific Publications, 88: 353-366.
  • 4. Bowell, R.J., Lagos, L., de los Hoyos, C.R., Declercq, J., 2020. Classification and characteristics of natural lithium resources. Elements, 16: 259-264.
  • 5. Brandt, F., Haus, R., 2010. New concepts for lithium minerals processing. Minerals Engineering, 23: 659-661.
  • 6. Choubey, P.K., Kim, M., Srivastava, R.R., Lee, J., Lee, J.-Y., 2016. Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: From mineral and brine resources. Minerals Engineering, 89: 119-137.
  • 7. Clayton, D., 2007. Handbook of Isotopes in the Cosmos. Cambridge University Press, New York, USA.
  • 8. Dews, J., 1966. The isotopic composition of lithium in chondrules. Journal of Geophysical Research, 71: 1896-1977.
  • 9. Ellis, B.S., Szymanowski, D., Magna, T., Neukampf, J., Dohmen, R., Bachmann, O., Ulmer, P., Guillong, M., 2018. Post-eruptive mobility of lithium in volcanic rocks. Nature Communications, 9: 3228.
  • 10. Flexer, V., Baspineiro, C.F., Galli, C.I., 2018. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment, 639: 1188-1204.
  • 11. Grew, E.S., 2020. The minerals of lithium. Elements, 16: 235-240.
  • 12. Herd, C.D.K., Treiman, A.H., McKay, G.A., Shaerer, C.K., 2004. The behavior of Li and B during planetary basalt crystallization. American Mineralogist, 89: 832-840.
  • 13. Jarczyk, L., 2007. Powstanie pierwiastków we Wszechświecie (in Polish). Foton,98: 16-27.
  • 14. Kavanagh, L., Keohane, J., Cabellos, G.G., Lloyd, A., Clearly, J., 2018. Global lithium sources - industrial use and future in the electric vehicle industry: a review. Resources, 7: 57.
  • 15. Koblitz, J., 2010. MetBase®, ver. 7.3, Meteorite Data Retrieval Software, Ritterhude, Germany.
  • 16. Li, M., Lu J., Chen, Z., Amine, K., 2018. 30 Years of lithium-ion batteries. Advanced Mate rials, 30: 1800561-1800584.
  • 17. Lodders, K., 1998. A survey of shergottite, nakhlite ad chassigny meteorites whole-rock compositions. Meteoritics and Planetary Science, 33: A183-A190.
  • 18. Magna, T., Šimčíková, M., Moynier, F., 2014. Lithium systematics in howardite-eucrite-diogenite meteorites: implications for crust-mantle evolution of planetary embryos. Geochimica et Cosmochimica Acta, 125: 131-145.
  • 19. Magna, T., Day, J.M.D., Mezger, K., Fehr, M.A., Dohmen, R., Chennaoui Aoudiehane, H., Agee, C.B., 2015. Lithium isotope constraints on crust-mantle interacions and surface processes on Mars. Geochimica et Cosmochimica Acta, 162: 46-65.
  • 20. Maneta, V., Baker, D.R., Minarik, W., 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contributions to Mineralogy and Petrology, 170: 4.
  • 21. Mason, B., 1979. Cosmochemistry: meteorites. In: Data of Geochemistry. United States Government Printing Office, Washington.
  • 22. Meng, F., McNeice, J., Zadeh, S.S., Ghahreman, A., 2019. Review of lith ium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metalurgy Review, 42: 123-141.
  • 23. Möhlmann, D., Thomsen, K., 2011. Properties of cryobrines on Mars. ICARUS, 212: 123-130.
  • 24. Murty, S.V.S., Shukla, P.N., Goel, P.S., 1983. Lithium in stone meteorites and stony irons. Meteoritics, 18: 123-136.
  • 25. Polański, A., Smulikowski, K., 1969. Geochemia (in Polish). Wyd. Geol., Warszawa.
  • 26. Pourkhorsandi, H., Gattacceca, J., Rochette, P., D'Orazio, M., Kamali, H., Avillez, R., Letichevsky, M., Djamali, M., Mirnejad, H., Debaille, V., Jull, T.A.J., 2019. Meteorites from the Lut Desert (Iran). Meteoritics and Planetary Science, 54: 1737-1763.
  • 27. Seitz, H.-M., Brey, G.P., Weyer, S., Durali, S., Ott, U., Münker, C., Mezger, K., 2006. Lithium isotope compositions of Martian and lunar reservoirs. Earth and Planetary Science Letters, 245: 6-18.
  • 28. Seitz, H.-M., Brey, G.P., Zipfel, J., Ott, U., Weyer, S., Durali, S., Weinbruch, S., 2007. Lithium isotope compositions of ordinary and carbonaceous chondrites and differentiated planetary bodies: Bulk solar system and solar reservoirs. Earth and Planetary Science Letters, 260: 582-596.
  • 29. Sephton, M.A., James, R.H., Fehr, M.A., Bland, P.A., Gounelle, M., 2013. Lithium isotopes as indicators of meteorite parent body alteration. Meteoritics and Planetary Science, 48: 872-878.
  • 30. Taylor, S.R.,McLennan, S.M., 2009. Planetary Crusts. Their Composition, Origin and Evolution. Cambridge University Press, New York.
  • 31. Tera, F., Eugster, O., Burnett, D.S., Wasserburg, G.J., 1970. Comparative study of Li, Na, K, Rb, Cs, Ca, Sr and Ba abundances in achondrites and in Apollo 11 lunar samples. Proceedings of the Apollo 11 Lunar Science Conference, 2: 1637-1657.
  • 32. Treiman, A.H., Musselwhite, D.S., Herd, C.D.K., Shearer, Jr., C.K., 2006. Light lithophile elements in pyroxenes of Northwest Africa (NWA) 817 and other Martian meteorites: implications for water in Martian magmas. Geochimica et Cosmochimica Acta, 70: 2919-2934.
  • 33. Udry, A., McSween, Jr. H.Y., Hervig, R.L., Taylor, R.L., 2015. Lithium isotopes and light lithophile element abundances in shergottites: Evidence for both magmatic degassing and subsolidus diffusion. Meteoritics and Planetary Science, 51: 80-104.
  • 34. Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Coscmochimica Acta, 59: 1217-1232.
  • 35. Weisberg, M.K., McCoy, T.J., Krot, A.N., 2006. Systematics and evaluation of meteorite classification. In: Meteorites and the Early Solar System II (eds. D. Lauretta and Y. McSween Jr.): 19-52. The University of Arizona Press, Tucson.
  • 36. White, W.M., Klein, E.M., 2014. Composition of the oceanic crust. In: Treatise on Geochemistry (eds. H.D. Holland and K.K. Turekian): 457-496. Elsevier.
  • 37. Yang, S., Humayun, M., Righter, K., Jefferson, G., Fields, D., Irving, A.J., 2015. Siderophile and chalcophile element abundances in shergottites: Implications for Martian core formation. Meteoritics and Planetary Science, 50: 691-714.
  • 38. www.foxbusiness.com/money/space-travel-what-it-costs-to-leaveearth (13.11.2020)
  • 39. www.lpi.usra.edu/meteor/metbull.php (2.08.2019)
  • 40. www.pubchem.ncbi.nlm.nih.gov/compound/3028194 (29.07.2019) www.tesla.com/blog/introducing-megapack-utility-scale-energy-storage (31.07.2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-697a25ca-3981-469f-a739-e1a6e925d0a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.