PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Feasibility Study of Debonding Detection in Multi-Layered Marine Thin-Wall Structures Using a Non-Destructive Vibration-Based Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study analyses different debonding defect scenarios on a multi-layered material composed of carbon fibre-reinforced polymer as a composite coating applied to structural steel, with the aim of applying it to marine structures. The study utilises vibration-based experimental non-destructive diagnostics and numerical simulations to thoroughly examine the debonding extent at four different lengths: 0%, 25%, 75%, and 100% of the total length of the material. The theoretical formulation of the free vibration of the proposed material for the fully bonded condition (0%) is also established using classical beam theory and the principles of composite materials. The four initial natural frequencies in the analysis provide indirect observations of the strength and stiffness properties. The results demonstrate that a reduction in the natural frequencies with increasing debonding size is mainly attributed to a loss of stiffness, rather than to the mass and stress distributions between the layers. Although debonding significantly affects the structure at longer lengths, only a small effect is observed when debonding covers 25% of the length. Based on the results, the experimental methods demonstrate strong agreement with the numerical approaches for determining natural frequencies, despite the unexpected results for the fundamental frequency of vibrations in the theoretical approaches. Eventually, we show that the prediction model established for this purpose accurately predicts the impact of debonding defects on the vibration characteristics of a structure with a high coefficient of determination.
Rocznik
Tom
Strony
137--146
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Gdansk University of Technology, Poland
autor
  • Gdańsk University of Technology, Institute of Naval Architecture, Poland
  • Gdansk University of Technology, Institute of Naval Architecture, Poland
Bibliografia
  • 1 Kirchgeorg T, Weinberg I, Hörnig M, Baier R, Schmid MJ, Brockmeyer B. Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment. Marine Pollution Bulletin, vol. 136, pp. 257–268, Nov. 01, 2018. Pergamon. https://doi.org/10.1016/j.marpolbul.2018.08.058.
  • 2 Borrie D, Al‐saadi S, Zhao XL, Singh Raman RK, Bai Y. Bonded cfrp/steel systems, remedies of bond degradation and behaviour of CFRP repaired steel: An overview. Polymers (Basel), vol. 13, no. 9, pp. 1–38, 2021. https://doi.org/10.3390/polym13091533.
  • 3 Tezdogan T, Demirel YK. An overview of marine corrosion protection with a focus on cathodic protection and coatings. Brodogradnja, vol. 65, no. 2, pp. 49–59, 2014.
  • 4 Abo Nassar NE. Corrosion in marine and offshore steel structures: Classification and overview. Int. J. Adv. Eng. Sci. Appl., vol. 3, no. 1, pp. 7–11, 2022. https://doi.org/10.47346/ijaesa.v3i1.80.
  • 5 Motaleb M, Lindquist W, Ibrahim A, Hindi R. Repair assessment for distortion-induced fatigue cracks in a seismically retrofitted double-deck bridge complex. Eng. Struct., vol. 183, pp. 124–134, 2019. https://doi.org/https://doi.org/10.1016/j.engstruct.2019.01.004.
  • 6 Zima B, Breńkacz Ł. Guided wave propagation in debonding detection in CFRP-reinforced steel plate-like structures. Ocean Eng., vol. 298, no. December, 2024. https://doi.org/10.1016/j.oceaneng.2024.117215.
  • 7 Yu Q, Zhou S, Cheng Y, Deng Y. Research on Delamination Damage Quantification Detection of CFRP Bending Plate Based on Lamb Wave Mode Control. Sensors, vol. 24, no. 6, p. 1790, Mar. 2024. https://doi.org/10.3390/s24061790.
  • 8 Hosseini A, Ghafoori E, Wellauer M, Sadeghi Marzaleh A, Motavalli M. Short-term bond behaviour and debonding capacity of pre-stressed CFRP composites to steel substrate. Eng. Struct., vol. 176, pp. 935–947, Dec. 2018. https://doi.org/10.1016/j.engstruct.2018.09.025.
  • 9 Ameri B, Moradi M, Mohammadi B, Salimi-Majd D. Investigation of nonlinear post-buckling delamination in curved laminated composite panels via cohesive zone model. Thin-Walled Struct., vol. 154, p. 106797, Sep. 2020. https://doi.org/10.1016/j.tws.2020.106797.
  • 10 Li JG, Liu PF, Chu JK. Finite Element Analysis of Delamination Behaviours of Composite Laminates under Hygrothermal Environment Using Virtual Crack Closure Technique. J. Fail. Anal. Prev., vol. 19, no. 1, pp. 147–153, 2019. https://doi.org/10.1007/s11668-019-00582-5.
  • 11 Hassani S, Mousavi M, Gandomi AH. Structural health monitoring in composite structures: A comprehensive review. Sensors, vol. 22, no. 1, pp. 1–45, 2022. https://doi.org/10.3390/s22010153.
  • 12 Wang B, Zhong S, Lee TL, Fancey KS, Mi J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng., vol. 12, no. 4, pp. 1–28, 2020. https://doi.org/10.1177/1687814020913761.
  • 13 Hou R, Xia Y. Review of the new development of vibration-based damage identification for civil engineering structures: 2010–2019. J. Sound Vib., vol. 491, p. 115741, 2021. https://doi.org/https://doi.org/10.1016/j.jsv.2020.115741.
  • 14 Garcia C, Jurado A, Zaba O, Beltran P. Detection and quantification of delamination failures in marine composite bulkheads via vibration energy variations. Sensors, vol. 21, no. 8, 2021. https://doi.org/10.3390/s21082843.
  • 15 Kumar V, Panda SK, Mahmoud SR, Balubaid M. Numerical investigation of transient thermo-mechanical loading effect on combined damaged (crack and delamination) curved shell structure: An experimental verification. Ocean Eng., vol. 266, no. P4, p. 113009, 2022. https://doi.org/10.1016/j.oceaneng.2022.113009.
  • 16 Brethee KF, Uwayed AN, Alden Qwam AY. A novel index for vibration-based damage detection technique in laminated composite plates under forced vibrations: experimental study. Struct. Heal. Monit., vol. 22, no. 5, pp. 3109–3125, Jan. 2023. https://doi.org/10.1177/14759217221145622.
  • 17 Verenkar S, Sridhar I, Uppin VS, Shivakumar Gouda PS. Experimental and numerical study on vibration-based damage detection and localisation in laminated composite plates. Frat. ed Integrita Strutt., vol. 18, no. 67, pp. 163–175, 2024. https://doi.org/10.3221/IGF-ESIS.67.12.
  • 18 Sreekanth TG, Senthilkumar M, Reddy M. Vibration-based delamination evaluation in GFRP composite beams using ANN. Polymers and Polymer Composites, vol. 29, no. 9_suppl, pp. S317–S324, 2021. https://doi.org/10.1177/09673911211003399.
  • 19 Shahdin A, Morlier J, Niemann H, Gourinat Y. Correlating low energy impact damage with changes in modal parameters: Diagnosis tools and FE validation. Struct. Heal. Monit., vol. 10, no. 2, pp. 199–217, 2011. https://doi.org/10.1177/1475921710373297.
  • 20 Shahdin A, Morlier J, Michon G, Mezeix L, Bouvet C, Gourinat Y. Application of modal analysis for evaluation of the impact resistance of aerospace sandwich materials. Conf. Proc. Soc. Exp. Mech. Ser., vol. 1, pp. 171–177, 2011. https://doi.org/10.1007/978-1-4419-9302-1_15.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6976e1b6-8eda-437b-8644-11858ed7ef69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.