Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Measurements of inherent optical properties (IOPs) and characteristics of concentration and composition of suspended particles were made on original and size-fractionated surface water samples from Arctic fjords and coastal waters of western Spitsbergen in the Svalbard archipelago, in the summer months of 2021 and 2022. Optical measurements included the spectral scattering coefficient of particles, and spectral absorption coefficients of particles as well as depigmented (non-algal) particles and phytoplankton. Assemblages of suspended particles were characterised by measuring the mass concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate inorganic matter (PIM), and phytoplankton pigments including chlorophyll a (Chla ). All measurements were performed on original (unfiltered) seawater and on size-fractionated samples obtained by filtration using a combination of nylon meshes and membrane filters. This allowed us to determine the contribution of the fractions of very small (VS), small (S) and combined medium and large particles (ML) to the total SPM and Chla, as well as to the total scattering and absorption coefficients. The obtained results: (i) indirectly indicate a clear variability in particle size distributions occurring in the studied marine environment (e.g., the contribution of ML size fraction to SPM (the ratio SPMML/SPM) varied between 0.10 and 0.52); (ii) indicate noticeable differences in composition between size fractions (e.g., the POM/SPM ratio was on average 0.21 for the S fraction, and 0.34 and 0.32 for the VS and ML fractions, respectively); (iii) in most cases indicate that the fraction S had the largest contribution to all analysed spectral optical coefficients, followed by the VS and ML fractions (the average contributions of the S fraction to scattering coefficient of particles and absorption coefficient of particles or depigmented (non-algal) particles were above 0.6 in the entire analysed spectral ranges); (iv) allowed for the identification of statistical relationships between selected characteristics describing changes in particle size and variability of particle IOPs (e.g., we observed statistical relations between SPMML/SPM and the spectral slope of scattering coefficient by particles, as well as SPM-specific coefficients of scattering by particles).
Słowa kluczowe
inherent optical properties (spectral scattering coefficient of particles spectral absorption coefficients of particles depigmented (non-algal) particles and phytoplankton)
composition of suspended particulate matter (mass concentrations of particulate organic matter particulate inorganic matter chlorophyll a
seawater samples fractionated by particle size
contributions of size fractions of suspended matter to particle concentration metrics and optical coefficients
relations between metrics of size composition and optical coefficients
arctic coastal waters
Czasopismo
Rocznik
Tom
Strony
Art. no. 66403
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
autor
- Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
autor
- Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
Bibliografia
- 1. Ahn, Y.-H., 1999. Proprietes optiques des particules biologiques et minerales presentes dans l’ocean. Application: inversion de la reflectance. PhD thes. Univ. Pierre and Marie Curie, Paris, France.
- 2. Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003. Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843-859. https://doi.org/10.4319/lo.2003.48.2.0843
- 3. Babin, M., Stramski, D., 2002. Light absorption by aquatic particles in the near-infrared spectral region. Limnol. Oceanogr. 47, 911-915. https://doi.org/10.4319/lo.2002.47.3.0911
- 4. Babin, M., Stramski, D., 2004. Variations in the mass-specific absorption coefficient of mineral particles suspended in water. Limnol. Oceanogr. 49, 756-767. https://doi.org/10.4319/lo.2004.49.3.0756
- 5. Bricaud, A., Morel, A., 1986. Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling. Appl. Opt. 25, 571-580.
- 6. Ciotti, A.M., Lewis, M.R., Cullen, J.J., 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 47 (2), 404-417.
- 7. Davies, E.J., McKee, D., Bowers, D., Graham, G.W., Nimmo-Smith, W.A.M., 2014. Optically significant particle sizes in seawater. Appl. Opt. 53, 1067-1074. http://dx.doi.org/10.1364/AO.53.001067
- 8. IOCCG Protocol Series, 2018. Inherent Optical Property Measurements and Protocols: Absorption Coefficient, [in:] Neeley, A. R. Mannino, A. (Eds.), IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation Vol. 1.0, IOCCG, Dartmouth, NS, Canada, 78 pp. http://dx.doi.org/10.25607/OBP-119
- 9. Jonasz, M., Fournier, G.R., 2007. Light scattering by particles in water. Theoretical and experimental foundations. Acad. Press, Amsterdam, 704 pp.
- 10. Koestner, D., Stramski, D., Reynolds, R.A., 2020. Assessing the effects of particle size and composition on light scattering through measurements of size-fractionated seawater samples. Limnol. Oceanogr. 65 (2), 173-190. https://doi.org/10.1002/lno.11259
- 11. Meler, J., Litwicka, D., Zabłocka, M., 2023. Variability of light absorption coefficients by different size fractions of suspensions in the southern Baltic Sea, Biogeosciences 20, 2525-2551. https://doi.org/10.5194/bg-20-2525-2023
- 12. Mobley, C. D. (Ed.), 2022. The Oceanic Optics Book, International Ocean Colour Coordinating Group (IOCCG), Dartmouth, NS, Canada, 924 pp. https://doi.org/10.25607/OBP-1710
- 13. Morel, A., Bricaud, A., 1986. Inherent optical properties of algal cells including picoplankton theoretical and experimental results. Canadian Bull. Fish. Aquat. Sci. 214, 521-560.
- 14. Neukermans, G., Loisel, H., Meriaux, X., Astoreca, R., McKee, D., 2012. In situ variability of mass- specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnol. Oceanogr. 57 (1), 124-144. https://doi.org/10.4319/lo.2011.57.1.0124
- 15. Pearlman, S.R., Costa, H.S., Jung, R.A., McKeown, J.J., Pearson, H.E., 1995. Solids (section 2540), [in:] Eaton, A.D., Clesceri, L.S., Greenberg, A.E. (Eds.), Standard Methods for the Examination of Water and Wastewater. American Publ. Health Assoc., Washington, D.C., 2-53-2-64.
- 16. Peng, F., Effler, S.W., 2007. Suspended minerogenic particles in a reservoir: Light-scattering features from individual particle analysis, Limnol. Oceanogr. 52, 204-216.
- 17. Ramı́rez-Pérez, M., Röttgers, R., Torrecilla, E., Piera, J., 2015. Cost-Effective Hyperspectral Transmissometers for Oceanographic Applications: Performance Analysis. Sensors 15, 20967-20989. https://doi.org/10.3390/s150920967
- 18. Reynolds, R.A., Stramski, D., Neukermans, G., 2016. Optical backscattering of particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition. Limnol. Oceanogr. 61, 1869-1890. https://doi.org/10.1002/lno.10341
- 19. Röttgers, R., Gehnke, S., 2012. Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach. Appl. Opt. 51, 1336-1351.
- 20. Stoń, J., Kosakowska, A., 2002. Phytoplankton pigments designation – an application of RP-HPLC in qualitative and quantitative analysis. J. Appl. Phycol. 14, 205-210. https://doi.org/10.1023/A:1019928411436
- 21. Stoń-Egiert, J., Kosakowska, A., 2005. RP-HPLC determination of phytoplankton pigments comparison of calibration results for two columns. Mar. Biol. 147, 251-260. https://doi.org/10.1007/s00227-004-1551-z
- 22. Stoń-Egiert, J., Łotocka, M., Ostrowska, M., Kosakowska, A., 2010. The influence of biotic factors on phytoplankton pigment composition and resources in Baltic ecosystems: new analytical results. Oceanologia 52(1), 101-125. https://doi.org/10.5697/oc.52-1.101
- 23. Stramski, D., Babin, M., Woźniak, S.B., 2007. Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater. Limnol. Oceanogr. 52, 2418-2433. https://doi.org/10.4319/lo.2007.52.6.241
- 24. Stramski, D., Kiefer, D.A, 1991. Light scattering by microorganisms in the open ocean. Prog. Oceanogr. 28, 343-383. https://doi.org/10.1016/0079-6611(91)90032-H
- 25. Stramski, D., Reynolds, R.I., Kaczmarek, S., Uitz, J., Zheng, G., 2015. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. Appl. Opt. 54, 6763-6782. https://doi.org/10.1364/AO.54.006763
- 26. Stramski, D., Woźniak, S.B., Flatau, P.J., 2004. Optical properties of Asian mineral dust suspended in seawater. Limnol. Oceanogr. 49, 749-755. https://doi.org/10.4319/lo.2004.49.3.0749
- 27. Tassan, S., Ferrari, G.M., 1995. An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol. Oceanogr. 40(8), 1358-1368.
- 28. Tassan, S., Ferrari, G.M., 2002. A sensitivity analysis of the ’transmittance-reflectance’ method for measuring light absorption by aquatic particles. J. Plankton Res. 24(8), 757-774. https://doi.org/10.1093/plankt/24.8.757
- 29. Woźniak, B., Dera, J., 2007. Light Absorption in Sea Water. Springer, New York.
- 30. Woźniak, S.B., Litwicka, D., Stoń-Egiert, J., Stramski, D., 2024. Variability of inherent optical properties of seawater in relation to the concentration and composition of suspended particulate matter in the coastal Arctic waters of western Spitsbergen. J. Mar. Syst. 246, 104019. https://doi.org/10.1016/j.jmarsys.2024.104019
- 31. Woźniak, S.B., Meler, J., Stoń-Egiert, J., 2022. Inherent optical properties of suspended particulate matter in the southern Baltic Sea in relation to the concentration, composition and characteristics of the particle size distribution; new forms of multicomponent parameterizations of optical properties. J. Mar. Syst. 229, 103720. https://doi.org/10.1016/j.jmarsys.2022.103720
- 32. Woźniak, S.B., Sagan, S., Zabłocka, M., Stoń-Egiert, J., Borzycka, K., 2018. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J. Mar. Syst. 182, 79-96. https://doi.org/10.1016/j.jmarsys.2017.12.005
- 33. Woźniak, S.B., Stramski, D., Stramska, M., Reynolds, R.A., Wright, V.M., Miksic, E.Y., Cichocka, M., Cieplak, A.M., 2010. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J. Geophys. Res. Oceans 115, C08027. https://doi.org/10.1029/2009JC005554
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-696e4bd4-05ce-4db9-ae94-0cc9450b8e10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.