PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new fuel-injection mechatronic control method for direct-injection internal combustion engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel fuel-injection mechatronic control method and system for direct injection (DI) internal combustion engines (ICE) is proposed. This method and system is based on the energy saving in a capacitance using DC-DC converter, giving a very fast ON state of the fuel injectors’ electro-magnetic fluidical valves without an application of the initial load current. A fuel-injection controller for the DI ICEs that provides a very short rising time of an electromagnet-winding current in an initial ON state of the fuel-injector’s electromagnetic fluidical valves, which improves a fuel-injection controller reliability and simplify its construction, is presented. Due to a number of advantages of afore -mentioned fuel-injection mechatronic control method and system, it may be utilised for the DI ICEs with fuel injectors dedicated to all types of liquid and/or gas fuels, for example, gasoline, diesel-oil, alkohol, LPG and NPG.
Rocznik
Strony
276--280
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • Institute for Automotive Vehicles and Combustion Engines, Department of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Institute of Technology, State Higher Vocational School in Nova Sandec, ul. Staszica 1, 33-300 Nowy Sącz, Poland
Bibliografia
  • 1. Achleitner E., Bcker H., Funaioli A. (2007), Direct injection systems for otto engines.,SAE Technical Paper, 2007-01-1416.
  • 2. Berndorfer A., Breuer S., Piock W., Bacho P. (2013), Diffusion Combustion Phenomena in GDi Engines caused by Injection Process, SAE Technical Paper, 2013-01-0261.
  • 3. Bosch R. (2014), Automotive Electrics and Automotive Electronics, Springer Vieweg, 5th Edition, Springer, Germany,
  • 4. Boudy F., Seers P. (2009), Impact of physical properties of biodiesel on the injection process in a common-rail direct injection system, Energy Conversion and Management, 50(12), 2905-2912.
  • 5. Chatlatanagulchai W., Yaovaja K., Rhienprayoon S., Wannatong K. (2010), Gain-scheduling integrator-augmented sliding-mode control of common-rail pressure in dieseldual-fuel engine, SAE Technical Paper, 2010-01-1573.
  • 6. Chen H., Gong X., Liu Q. F., Hu Y. F. (2014), Triple-step method to design nonlinear controller for rail pressure of gasoline direct injection engines, IET Control Theory & Applications, 8(11), 948-959.
  • 7. Chladny R.R., Koch C.R., (2008), Flatness-based tracking of an electromechanical variable valve timing actuator with disturbance observer feedforward compensation, IEEE Transactions on Control Systems Technology, 16(4), 652 – 663.
  • 8. Como M., Savaresi S.M., Scattolini R., Comignaghi E., Sofia M., Palma A., Eduardo Sepe E. (2008), Modelling, parameter identification and dynamics analysis of a common rail injection system for gasoline engines, Proceedings of the 17th IFAC World Congress, 8481-8486, Seoul, Korea.
  • 9. Gaeta A., Fiengo G., Palladino A., Giglio V. (2009), A control oriented model of a common-rail system for gasoline direct injection engine, Proceedings of the 28th Chinese Control Conference, 6614-6619, Shanghai, China.
  • 10. Gaeta A., Montanaro U. , Fiengo G. , Palladino A & Giglio V. (2012), A model-based gain scheduling approach for controlling the common-rail system for GDI engines, International Journal of Control, 85(4), 419-436.
  • 11. Gaeta, A., Montanaro, U., Giglio, V. (2011), Model-based Control of the AFR for GDI Engines via Advanced Co-simulation: An Approach to Reduce the Development Cycle of Engine Control Systems, Journal of Dynamic Systems, Measurement, and Control, 133, 061006 (1-17).
  • 12. Giorgetti N., Ripaccioli G., Bemporad A., Kolmanovsky I., and Hrovat D. (2006), Hybrid model predictive control of direct injection stratified charge engines, IEEE/ASME Transactions on Mechatronics, 11(5), 499-506.
  • 13. Gupta, V.K., Zhang Z., Sun Z. (2011), Modeling and control of a novel pressure regulation mechanism for common rail fuel injection systems, Applied Mathematical Modelling, 35(7), 3473-3483.
  • 14. Hoffmann G., Befrui B., Berndorfer A., Piock W. and Varble D. (2014), Varble Fuel System Pressure Increase for Enhanced Performance of GDi Multi Hole Injection Systems, Delphi Automotive Published 04/01/2014 Copyright © 2014 SAE International J. Engines.
  • 15. Husted H., Spegar T., Spakowski J. (2014), The Effects of GDi Fuel Pressure on Fuel Economy, SAE Technical Paper, 2014-01- 1438.
  • 16. Jiangjian A., Gao Xiyan B., Yao Chunde C. (2006), An Experimental Study on Fuel Injection System and Emission of a Small GDI Engine, Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 1-6.
  • 17. Lino P., Maione B., Rizzo A. (2007), Nonlinear modelling and control of a common rail injection system for diesel engines, Applied Mathematical Modelling, 31(9), 1770-1784.
  • 18. Montanaro U., Gaeta A., Giglio V. (2011), An MRAC approach for tracking and ripple attenuation of the common rail pressure for GDI engines, Proceedings of the 18th IFAC World Congress, 4173–4180, Milano, Italy.
  • 19. Ra Y., Loeper, P., Andrie, M., Krieger, R., David E. Foster D. , Reitz R. and Durrett R. (2012), Gasoline DICI Engine Operation in the LTC Regime Using Triple-Pulse Injection, SAE Int. J. Engines, 5(3), 1109-1132.
  • 20. Sellnau M., Sinnamon J., Hoyer K., Husted H. (2012), Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM, SAE Int. J. Engines, 5(2), 300-314.
  • 21. Sellnau M., Sinnamon J., Hoyer K., Kim, J., Cavotta M. and Harry Husted H. (2013), Part-Load Operation of Gasoline Direct-Injection Compression Ignition (GDCI) Engine, SAE Technical Paper, 2013- 01-0272.
  • 22. Sun Z-Y., Zhao J., ShiLeonid Y. and Ma G. (2015), Numerical investigation on transient flow and cavitation characteristic within nozzle during the oil drainage process for a high-pressure commonrail DI diesel engine, Energy Conversion and Management, 98, 507- 517.
  • 23. Tang H.J., Weng L., Dong Z.Y., Yan R. (2009), Adaptive and learning control for SI engine model with uncertainties, IEEE/ASME Transactions on Mechatronics, 14, 93-104.
  • 24. Wen-Chang T., Peng-Cheng Y., (2011), Design of the Electrical Drive for the High-Pressure GDI Injector in a 500cc Motorbike Engine, International Journal of Engineering and Industries, 2(1), 70- 83.
  • 25. Yan F., Wang J. (2011), Common rail injection system iteractive learning control based parameter calibration for accurate fuel injection quantity control, International Journal of Automotive Technology, 12(2), 149-157.
  • 26. Zhao H. (2016) Advanced Direct Injection Combustion Engine Technologies and Development, Elsevier, Amsterdam.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-696bb840-4fec-4ec8-9856-78533539953d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.