PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Possibility of Using the Finite Element Method for Determining Thermal Diffusivity on the Example of Nickel Using the Classic and The Modified Pulse Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of the work is to present the possibility of using the finite element method implemented in the COMSOL 3.5a program in the heat transfer symmetry 2D module to determine thermal diffusivity by the classic and modified pulse methods. The method of determining the thermal diffusivity by means of measuring and recording the course of the temperature difference between the extreme surfaces of the tested sample and changes in the temperature increase on the back surface after a laser shot at its front surface, assuming that the sample is adiabatic for a representative experimental course at a given temperature, is discussed. This paper presents the basic metrological conditions for the implementation of the modified pulse method for testing the temperature characteristics of thermal diffusivity on the example of nickel. The heat pulse generated by the laser method at the extreme surface of the sample for a thermostatic temperature of 341.8 °C was simulated. Using the inverse problem in both the classic and modified methods, the thermal diffusivity of the material in question was determined and these results were compared with the experimentally obtained values. The values of thermal diffusivity differ from those obtained experimentally by 3.3% for the classic method and approximately 2.5% for the modified method. A preliminary analysis of the influence of the number of nodal points on the numerical results obtained was also carried out and the results for the number of nodes between 64 and 17,000 change by only 1.1%. The paper presents a combination of experimental and numerical studies which is useful in science and simplifies the process of time-consuming experimental studies.
Słowa kluczowe
Twórcy
  • Polish Air Force University, Dywizjonu 303, No. 35, 08-521 Dęblin, Poland
  • Military University of Technology, Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
Bibliografia
  • 1. Terpiłowski J., Jóźwiak S., Woroniak G., Szczepaniak R. Thermal Diffusivity Characteristics of the IN718 Alloy Tested with the Modified Pulse Method. Materials 2022; 15: 7881.
  • 2. Su Y. Modelling and Characteristic Study of Thin Film Based Biosensor Based on COMSOL. Hindawi Publishing Corporation Mathematical Problems in Engineering 2014; 581063.
  • 3. Singh S., Saha A.K. Numerical study of flow and heat transfer during a high-speed micro-drop impact on thin liquid films. International Journal of Heat and Fluid Flow 2021; 89.
  • 4. Zhou J., Huang J., Liao J., Guo Y., Zhao Z., Liang H. Multi-field simulation and optimization of SiNx:H thin-film deposition by large-size tubular LF-PECVD. Solar Energy 2021; 228: 575-585.
  • 5. Yadav H.N.S.N., Kumar M., Kumar A., Das M.COMSOL simulation of microwave plasma polishing on different surfaces. Materials today: proceedings 2021; 45(6): 4803-4809.
  • 6. Andreotta R., Ladani L., Brindley W. Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties. Finite Elements in Analysis and Design 2017; 135: 36-43.
  • 7. Zandi S., Saxena P., Razaghi M., Gorji N.E. Simulation of CZTSSe Thin-Film Solar Cells in COMSOL: Three-Dimensional Optical, Electrical, and Thermal Models. IEEE Journal of Photovoltaics, 2020; 10(5): 1503-1507.
  • 8. Yantchev V., Turner P., Plessky V. COMSOL modelling of SAW Resonators. In: IEEE International Ultrasonics Symposium Proc. 2016.
  • 9. Saxena P., Gorji N.E. COMSOL Simulation of Heat Distribution in Perovskite Solar Cells: Coupled Optical–Electrical–Thermal 3-D Analysis. IEEE Journal of Photovoltaics 2019; 9(6): 1693-1698.
  • 10. Budakli M., Gambaryan-Roisman T., Stephan P. Gas- driven thin liquid films: Effect of interfacial shear on the film waviness and convective heat transfer. International Journal of Thermal Sciences 2019; 146.
  • 11. Alrwashdeh S.S, Al-falahat A.M., Murtadha T.K. Ef- fect of Turbocharger Compression Ratio on Performance of the Spark-Ignition Internal Combustion Engine. Emerging Science Journal 2022, 6(3), 482-492.
  • 12. Zhoua L., Zhoua S., Dua X., Yang Y. Heat transfer characteristics of a binary thin liquid film in a microchannel with constant heat flux boundary condition. International Journal of Thermal Sciences 2018; 134: 612-621.
  • 13. Alrwashdeh S.S., Ammari H., Madanat M.A., Al-Falahat A.M. The Effect of Heat Exchanger Design on Heat Transfer Rate and Temperature Distribution. Emerging Science Journal 2022, 6(1), 128-137.
  • 14. Harsito C., Triyono T., Rovianto E. Analysis of Heat Potential in Solar Panels for Thermoelectric Generators using ANSYS Software. Civil Engineering Journal 2022, 8(7), 1328-1338.
  • 15. Hemberger F., Ebert H.P., Fricke J. Determination of the Local Thermal Diffusivity of Inhomogeneous Samples by a Modified Laser-Flash Method. International Journal of Thermophysics 2007; 28: 1509–1521.
  • 16. Szczepaniak R. Effect of Surface Topology on the Apparent Thermal Diffusivity of Thin Samples at LFA Measurements. Materials 2022; 15: 4755.
  • 17. Pereira da Silva W., Pereira da Silva A., Matos de Souto L., Freire da Silva Junior A., Ferreira J.P. de L., Gomes J.P., de Melo Queiroz A.J. Determination of constant and variable thermal diffusivity of cashew pulp during heating: Experimentation, optimizations and simulations. Case Studies in Thermal Engineering 2022; 39: 102428.
  • 18. Koyanagi T., Wang H., Mena J.D.A., Petrie C.M., Deck C.P., Kim W.J., Kim D., Sauder C., Braun J., Katoh Y. Thermal diffusivity and thermal conductivity of SiC composite tubes: the effects of microstructure and irradiation. Journal of Nuclear Materials 2021; 557: 153217.
  • 19. Manta A., Gresil M., Soutis C. Transient conduction for thermal diffusivity simulation of a graphene/polymer and its full-field validation with image reconstruction. Composite Structures 2021; 256: 113141.
  • 20. Lim K., Kim S., Chung M. Improvement of the thermal diffusivity measurement of thin samples by the flash method. Thermochimica Acta 2009; 494(1-2): 71-79.
  • 21. Philipp A., Eichinger J.F., Aydin R.C. et al. The accuracy of laser flash analysis explored by finite element method and numerical fitting. Heat Mass Transfer 2020; 56: 811–823.
  • 22. Ruffio E., Saury D., Petit D. Improvement and comparison of some estimators dedicated to thermal diffusivity estimation of orthotropic materials with the 3D-flash method. International Journal of Heat and Mass Transfer 2013; 64: 1064-1081.
  • 23. Malinarič S., Bokes P. Impact of the Heat Source Model on Transient Methods of Conductivity and Diffusivity Measurement. International Journal of Thermophysics 2022; 43; 27.
  • 24. García P., Mora, J., González del Val M., Carreño F., García de Blas F.J., Agüero A. Considering Thermal Diffusivity as a Design Factor in Multilayer Hybrid Ice Protection Systems. Coatings 2022, 12: 1952.
  • 25. Beaufait R., Ammann S., FischerL. The Elephant Problem—Determining Bulk Thermal Diffusivity. Energies 2021, 14: 7444.
  • 26. Szczepaniak R. Attempts to Identify the Curie Point Using a Modified Laser Flash Method, PhD. Thesis. Military University of Technology, 2014.
  • 27. Parker W.J., Jenkins R.J., Butler C.P., Abbot G.L. Flash method of determining thermal diffusivity heat capacity and thermal conductivity. Journal of Applied Physics1961; 32: 1679-1684.
  • 28. Terpiłowski J., Woroniak G., Szczepaniak R., Rudzki R.Metrological conditions for the research of thermal diffusivity of ferromagnetic alloys using the modified pulse method. Publishing House of the Rzeszów University of Technology, 2014.
  • 29. Carslaw H.S., Jaeger I.C. Conduction of Heat in Solids, 2nd ed. Oxford University Press, 1986.
  • 30. Terpiłowski J., Szczepaniak R., Woroniak G., Rudzki R. Adaptation of the modified pulse method for the determination of thermal diffusivity of solids in the vicinity of second-order phase transition points. Archives of Thermodynamics 2013; 34(2): 71-90.
  • 31. Material Property Database. MPDB, v. 7.49. JAHM Software 1 nc, www.jahm.com; 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6961c644-062d-46e5-92e1-30be3cc29f42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.